
UCRL-WEB-201525

PMATH Reference Manual

PMATH Reference Manual - 1

Table of Contents

Preface 5
Introduction 6

Background 6
Availabilty 6

Design Principles 7
Scope and Naming Conventions 7
Random Number Generators 7
Constants 8

PMATH Routines by Category with MATHLIB Names 9
MATHLIB Routines Included in PMATH 9

Elementary Functions 9
Random Number Generators 9
Maxima and Minima 9
Table Look-Up Routines 9
Elementary Statistical Routines 9
Linear Algebra Routines 10
Root Finders 10
Interpolation and Approximation Routines 10
Differential Equation Solvers 10
Miscellaneous Routines 10
Error Procedures 11

MATHLIB Routines Omitted from PMATH 12
Elementary Functions 12
Random Number Generators 12
Maxima and Minimaz 12
Differential Equation Solvers 13
Error Procedures 13

Conversion of MATHLIB to PMATH Names 14
PMATH Routines by Category with PMATH Names 16

PMATH Routines Grouped by Function 16
Elementary Functions 16
Random Number Generators 16
Maxima and Minima 16
Table Look-Up Routines 17
Elementary Statistical Routines 17
Linear Algebra Routines 17
Root Finders 18
Interpolation and Approximation Routines 18
Differential Equation Solvers 18
Miscellaneous Routines 18
Error Procedure 18

Routines New to PMATH Explained 19
Vectorized RANF 19

PMATH Reference Manual - 2

Portable Seed-Passing Module 19
PMATH Routine Descriptions 21

AAAAAA 22
CV16TO64 23
CV64TO16 24
DCONST 25
DCORRV 27
DCOVAR 28
DFITPO 30
DLSODE 35
DMAXAF 55
DMEANF 56
DMEANV 57
DMEDF 58
DMINAF 59
DMINMX 60
DRANF 61
DRANFV 62
DRANKS 63
DREFIT 64
DRLGF 66
DSRCOM 67
DSTDEV 68
DUMACH 69
DZERO 70
IMAXAF 72
IMINAF 73
IMINMX 74
IUMACH 75
LDFD 76
LDFS 77
LUFD 78
LUFS 79
LUGD 80
LUGS 81
RANF8 82
RLFCNT 83
RLGF8 84
RLMSET 85
RLSGET 87
RLSSET 88
RNFCNT 90
RNMSET 91
RNSGET 93
RNSSET 94
RUMACH 95

PMATH Reference Manual - 3

SCONST 96
SCORRV 98
SCOVAR 99
SFITPO 101
SLSODE 106
SMAXAF 126
SMEANF 127
SMEANV 128
SMEDF 129
SMINAF 130
SMINMX 131
SRANF 132
SRANFV 133
SRANKS 134
SREFIT 135
SRLGF 137
SSRCOM 138
SSTDEV 139
SZERO 140
XERROR 142
XERRWD 143
XERRWV 144
XSETF 145
XSETUN 146

Disclaimer 147
Keyword Index 148
Alphabetical List of Keywords 150
Date and Revisions 152

PMATH Reference Manual - 4

Preface

Function: The PMATH mathematics subroutine library (libpmath.a) is a portable version of the
CAL-coded part of the former MATHLIB (libmath.a) library, with a few extra routines
added. PMATH supplements but does not duplicate the SLATEC library.

Availability: A chart showing the comparative availability of PMATH and SLATEC appears in
the introductory section (page 6) below. MATHLIB itself is no longer available.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, secure e-mail: lc-hotline@pop.llnl.gov).

This manual was adapted from the PMATH specifications and other related explanatory
files written by Frederick N. Fritsch.

Printing: The print file for this document can be found at:

on the OCF: http://www.llnl.gov/LCdocs/pmath/pmath.pdf
on the SCF: https://lc.llnl.gov/LCdocs/pmath/pmath_scf.pdf

PMATH Reference Manual - 5

http://www.llnl.gov/LCdocs/pmath/pmath.pdf

Introduction

Background
Inspired by a user survey conducted in November, 1992, LC's former Mathematical Software Support

group developed portable versions of the CAL-coded part of MATHLIB (/usr/local/lib/libmath.a on the
former CRAYs). This machine-independent mathematics subroutine library is called PMATH
(/usr/local/lib/libpmath.a). This document is the PMATH reference manual.

Later sections of this manual explain the design principles (including the name-choice principles) for
the PMATH library and how they were implemented. Because of the close connection between MATHLIB
and PMATH, we introduce the PMATH routines using their MATHLIB counterparts, and note which
MATHLIB routines were omitted from PMATH. A conversion chart between the MATHLIB and PMATH
names is included. The PMATH rountines are also listed by functional group under their own names, with
features of the new routines explained. The largest part of this manual by far is an alphabetical dictionary
of PMATH routines and the descriptive prologs for each, including the calling sequence.

Availabilty
MATHLIB was available on LC's CRAY J90 computers until they retired in March, 2000. Because

the PMATH, the former MATHLIB, and SLATEC libraries are conceptually related, this chart shows
where all three are available (in /usr/local/lib):

 Compaqs IBMs Linux
 ------- ---- -----
 MATHLIB no no no
 PMATH yes no(*) yes
 SLATEC yes no(*) no(*)

 (*)but is downloadable from LINMath

PMATH Reference Manual - 6

http://www.llnl.gov/LCdocs/nmg1

Design Principles
Decisions reached at a series of meetings held in July through September, 1993, became the guiding

principles behind the PMATH specifications.

Scope and Naming Conventions
Principle 1.1. All user-callable routines in PMATH shall have different names than their counterparts

in the former Cray libmath.a. Exception: PMATH routines may call standard subsidiary modules by their
standard names. This exception applies to LINPACK routines, such as SGEFA/SGESL, as well as the
(former) SLATEC error handlers XERROR/XERRWV and the machine precision function RUMACH.

Principle 1.2. Every module processing real data shall have an S-version (single precision), a D-version
(double precision), and a version (referred to as the "REAL*8 version") that produces a 64-bit result
regardless of the basic precision of the system. (This version is identical to the S-version on the former
Crays or to the D-version on the Sun, for example.) We view the S- and D-versions as being the "true"
PMATH. Implemented via conditional compilation or some other mechanism, the "REAL*8 version"
merely provides a convenient platform-independent naming convention. It generally does not have separate
documentation.

Principle 1.3. PMATH will support only the default INTEGER type of the host platform.

Principle 1.4. There shall be no optional arguments. All PMATH routines must be called with the full
argument list. This is the main reason for Principle 1.1 (to force users to examine all former MATHLIB
calls).

Principle 1.5. PMATH shall not duplicate capabilities already provided by the portable SLATEC library.
Thus the LINPACK routines required by some PMATH routines are not considered part of PMATH.

Random Number Generators
Principle 2.1. DRANF on 32-bit platforms (or SRANF on 64-bit platforms) shall exactly reproduce

the former Cray RANF results. There shall be a single sequence for both SRANF and DRANF. There shall
be only one set of set/get routines for this sequence. SRANF shall call DRANF and simply truncate the
result to single precision, modifying it if necessary to avoid returning exactly zero or one. In the present
implementation, both are separate "wrappers" for the same underlying generator RANF8. (SRANF does
not currently include the boundary checks.)

Principle 2.2. PMATH shall contain a vectorized version of RANF. The user interface is described in
a later section (page 19).

Principle 2.3. A portable version of RLGF and its support routines shall be included in PMATH. These
should be independent of the RANF sequence, as on the former Crays, and be designed according to the
same principles as in 2.1.

Principle 2.4. RNCOUNT and RLGCNT will be included only if they can be implemented easily and
at negligible runtime cost . (They are both included in the present implementation.)

Principle 2.5. PMATH shall contain a portable module to facilitate the passing of random number
generator seeds between different machines. The user interface is described in a later section (page 19).

PMATH Reference Manual - 7

Constants
Principle 3.1. A portable version of CONSTANT shall be included in PMATH. It should return the

correctly rounded value (to the precision implicit in its name) for each constant. On consultation with
potential users, it is sufficient that CONSTANT return one of the two machine numbers closest to the
correct value.

PMATH Reference Manual - 8

PMATH Routines by Category with MATHLIB Names

MATHLIB Routines Included in PMATH
The following list of MATHLIB routines that have been included in PMATH is organized the same

way as in the old MATHLIB Manual. The names given here are the MATHLIB names; refer to the
conversion chart (page 14) below for the associated PMATH name(s).

Elementary Functions

None included. (Assume supplied by vendor.)

Random Number Generators

RANF Uniform random number generator.
RANFV Uniform random number generator (vectorized).
RNCOUNT Count calls to RANF.
RANGET Get RANF seed.
RANSET Set RANF seed.
RNMUSET Set RANF multiplier.
RLGF Exponential random number generator.
RLGCNT Count calls to RLGF.
RLGGET Get RLGF seed.
RLGSET Set RLGF seed.
RLGMSET Set RLGF multiplier.

Maxima and Minima

MAXAF Maximum element of array (integer).
AMAXAF Maximum element of array (real).
MINAF Minimum element of array (integer).
AMINAF Minimum element of array (real).
MINMX Minimum and maximum elements of array (integer).
AMINMX Minimum and maximum elements of array (real).

Table Look-Up Routines

LDF Table look-down.
LUF Table look-up.
LUG Table look-up with guess.

Elementary Statistical Routines

AMEANF Mean of 1-D real array.
AMEDF Median of 1-D real array.
STDEVF Standard deviation of 1-D real array.
RANKS Ranks of 1-D real array.
AMEANV Mean vector of 2-D real array.
COVARV Variance-covariance matrix of 2-D real array.
CORRV Correlation matrix of 2-D real array.

PMATH Reference Manual - 9

Linear Algebra Routines

None included. (Assume BLAS and LINPACK supplied by vendor.)

For completeness, the following linear algebra routines were directly referenced by the former
MATHLIB and are used by the S-named PMATH routines. (Obtain the D-name by replacing the initial S
by D.)

BLAS :

SCOPY Copy a vector.
SDOT Dot product of two vectors.

LINPACK :

SGBFA Generate LU-factorization of a banded real matrix.
SGBSL Solve a banded linear system, given the factorization
 from SGBFA.
SGEFA Generate LU-factorization of a general real matrix.
SGESL Solve a general linear system, given the factorization
 from SGEFA.
SQRDC Generate QR-decomposition of a rectangular real
 matrix.
SQRSL Solve a linear least squares problem, given the SQRDC
 decomposition.

Root Finders

ZEROIN Zero of nonlinear function.

Interpolation and Approximation Routines

FITPOL Polynomial fit to data.
REFITP Repeated fitting after FITPOL.

Differential Equation Solvers

LSODE Ordinary differential equation solver (monotasking).
CFODE Internal routine for LSODE and NLSODE.
EWSET Internal routine for LSODE and NLSODE.
INTDY Internal routine for LSODE. (Optionally user-
 callable.)
PREPJ Internal routine for LSODE.
SOLSY Internal routine for LSODE.
SRCOM Internal routine for LSODE. (Optionally user-
 callable.)
STODE Internal routine for LSODE.
VNORM Internal routine for LSODE and NLSODE.

Miscellaneous Routines

AAAAAA Library version information.
CONSTANT Common mathematical constants.

PMATH Reference Manual - 10

IUMACH Standard output unit number.
RUMACH Single precision unit roundoff.

Error Procedures

XERROR Print error message.
XERRWV Print error message with value(s).
XSETUN Set error message unit number.
XSETF Set error message control flag.
IXSAV Internal routine for XERRWV, etc.

PMATH Reference Manual - 11

MATHLIB Routines Omitted from PMATH
These routines were omitted from PMATH because they are specific to CRAY computers or (for a

few) because no significant CRAY application code called this routine in 1993.

Elementary Functions

ALOGHF Fast half-precision logarithm function.
EXPHF Fast half-precision exponential function.
SQRTHF Fast half-precision square root function.

Random Number Generators

RNFMIX Get random starting seed for RANF.
RANN Multitasking random number generator (internal seeds).
RANNINIT Automatically set all seeds for RANN.
RNNSET Set seeds for RANN.
RANGEN Multitasking random number generator (user seeds).
ISDGEN Generate seeds for RANGEN.
JMPGEN Set jump for ISDGEN.
IPOW Internal routine for JMPGEN.
IPROD Internal routine for JMPGEN.
RLGMIX Get random starting seed for RLGF.
RANWORD Generate random string.

Maxima and Minimaz

IVMAX Vectorized array maximum for CIVIC (integer).
VMAX Vectorized array maximum for CIVIC (real).
IVMIN Vectorized array minimum for CIVIC (integer).
VMIN Vectorized array minimum for CIVIC (real).

PMATH Reference Manual - 12

Differential Equation Solvers

NLSODE Ordinary differential equation solver (multitasking).
INTY Internal routine for NLSODE.
INTYD Internal routine for NLSODE.
JPREP Internal routine for NLSODE.
SYSOL Internal routine for NLSODE.
SZRCM Internal routine for NLSODE.
TSODE Internal routine for NLSODE.

Error Procedures

LERRW Multitasking version of XERRWV.
LERIN Initialize LERRW.

PMATH Reference Manual - 13

Conversion of MATHLIB to PMATH Names
This chart lists the names of former MATHLIB routines and the corresponding single- and

double-precision names of PMATH routines. In cases where the routine processes only integer data or
where the S- and D-versions are dependent (see Principle 2.1 above), there is only one PMATH name and
it appears only in the righthand column. Each PMATH routine (version) has one descriptive prolog, reprinted
later in this manual (arranged alphabetically by routine name) and linked to the entry in the righthand
column for easy online access (you get the S-name version if there is one).

MATHLIB -PMATH-
(UNICOS) S-name D-name REAL*8
name name

RANF SRANF DRANF RANF8
RANFV SRANFV DRANFV RANFV8
RNCOUNT --- --- RNFCNT
RANGET --- --- RNSGET
RANSET --- --- RNSSET
RNMUSET --- --- RNMSET

RLGF SRLGF DRLGF RLGF8
RLGCNT --- --- RLFCNT
RLGGET --- --- RLSGET
RLGSET --- --- RLSSET
RLGMSET --- --- RLMSET

MAXAF --- --- IMAXAF
AMAXAF SMAXAF DMAXAF AMAXF8
MINAF --- --- IMINAF
AMINAF SMINAF DMINAF AMINF8
MINMX --- --- IMINMX
AMINMX SMINMX DMINMX AMNMX8

LDF LDFS LDFD LDF8
LUF LUFS LUFD LUF8
LUG LUGS LUGD LUG8

AMEANF SMEANF DMEANF AMEAN8
AMEDF SMEDF DMEDF AMED8
STDEVF SSTDEV DSTDEV STDEV8
RANKS SRANKS DRANKS RANKS8
AMEANV SMEANV DMEANV MEANV8
COVARV SCOVAR DCOVAR COVAR8
CORRV SCORRV DCORRV CORRV8

ZEROIN SZERO DZERO ZERO8

FITPOL SFITPO DFITPO FITPO8
REFITP SREFIT DREFIT REFIT8

LSODE SLSODE DLSODE LSODE8

AAAAAA --- --- AAAAAA
CONSTANT SCONST DCONST CONST8
IUMACH --- --- IUMACH
RUMACH RUMACH DUMACH UMACH8

PMATH Reference Manual - 14

XERROR --- --- XERROR
XERRWV XERRWV XERRWD XERRWV
XSETF --- --- XSETF
XSETUN --- --- XSETUN

 --- --- --- CV16TO64
 --- --- --- CV64TO16

PMATH Reference Manual - 15

PMATH Routines by Category with PMATH Names

PMATH Routines Grouped by Function
The following is a categorized list of the contents of PMATH. If more than one name is given, the first

is the S-name, the second is the D-name, and the third is the REAL*8 name. (Here "S" refers to single
precision, "D" to double precision.) Only user-callable routines have REAL*8 names. If only one name is
given, the routine is either typeless or does not process floating-point data.

There are no REAL*8-named routines in the library (except for RANF8 and RLGF8). Each name is
translated to an equivalent S- or D-name, depending on the precision of the platform.

The CV-routines are new to PMATH, and are provided to assist in correctly moving 48-bit integers
(like random number generator seeds) to or between 32-bit platforms.

Elementary Functions

None included. (Assume supplied by vendor.)

Random Number Generators

• SRANF (page 132)/DRANF (page 61)/RANF8 (page 82) Uniform random number generator.

• SRANFV (page 133)/DRANFV (page 62)/RANFV8 Uniform random number generator (vectorized).

• RNFCNT (page 90) Count calls to RANF.

• RNSGET (page 93) Get RANF seed.

• RNSSET (page 94) Set RANF seed.

• RNMSET (page 91) Set RANF multiplier.

• SRLGF (page 137)/DRLGF (page 66)/RLGF8 Exponential random number generator.

• RLFCNT (page 83) Count calls to RLGF.

• RLSGET (page 87) Get RLGF seed.

• RLSSET (page 88) Set RLGF seed.

• RLMSET (page 85) Set RLGF multiplier.

Maxima and Minima

• IMAXAF (page 72) Maximum element of array (integer).

• SMAXAF (page 126)/DMAXAF (page 55)/AMAXF8 Maximum element of array (real).

• IMINAF (page 73) Minimum element of array (integer).

• SMINAF (page 130)/DMINAF (page 59)/AMINF8 Minimum element of array (real).

• IMINMX (page 74) Minimum and maximum of array (integer).

• SMINMX (page 131)/DMINMX (page 60)/AMNMX8 Minimum and maximum of array (real).

PMATH Reference Manual - 16

Table Look-Up Routines

• LDFS (page 77)/LDFD (page 76)/LDF8 Table look-down.

• LUFS (page 79)/LUFD (page 78)/LUF8 Table look-up.

• LUGS (page 81)/LUGD (page 80)/LUG8 Table look-up with guess.

Elementary Statistical Routines

• SMEANF (page 127)/DMEANF (page 56)/AMEAN8 Mean of 1-D real array.

• SMEDF (page 129)/DMEDF (page 58)/AMED8 Median of 1-D real array.

• SSTDEV (page 139)/DSTDEV (page 68)/STDEV8 Standard deviation of 1-D real array.

• SRANKS (page 134)/DRANKS (page 63)/RANKS8 Ranks of 1-D real array.

• SMEANV (page 128)/DMEANV (page 57)/MEANV8 Mean vector of 2-D real array.

• SCOVAR (page 99)/DCOVAR (page 28)/COVAR8 Variance-covar. matrix of 2-D real array.

• SCORRV (page 98)/DCORRV (page 27)/CORRV8 Correlation matrix of 2-D real array.

Linear Algebra Routines

None included. (Assume BLAS and LINPACK supplied by vendor.)

PMATH Reference Manual - 17

Root Finders

• SZERO (page 140)/DZERO (page 70)/ZERO8 Zero of nonlinear function.

Interpolation and Approximation Routines

• SFITPO (page 101)/DFITPO (page 30)/FITPO8 Polynomial fit to data.

• SREFIT (page 135)/DREFIT (page 64)/REFIT8 Repeated fitting after FITPOL.

Differential Equation Solvers

• SLSODE (page 106)/DLSODE (page 35)/LSODE8 Ordinary differential equation solver
(monotasking).

• SCFODE/DCFODE Internal routine for LSODE.

• SEWSET/DEWSET Internal routine for LSODE.

• SINTDY/DINTDY/INTDY8 Internal routine for LSODE. (Optionally user-callable.)

• SPREPJ/DPREPJ Internal routine for LSODE.

• SOLSY/DSOLSY Internal routine for LSODE.

• SSRCOM (page 138)/DSRCOM (page 67)/SRCOM8 Internal routine for LSODE. (Optionally
user-callable.)

• SSTODE/DSTODE Internal routine for LSODE.

• SVNORM/DVNORM Internal routine for LSODE.

Miscellaneous Routines

• AAAAAA (page 22) Library version information.

• SCONST (page 96)/DCONST (page 25)/CONST8 Common mathematical constants.

• IUMACH (page 75) Standard output unit number.

• RUMACH (page 95)/DUMACH (page 69)/UMACH8 Single precision unit roundoff.

• CV16TO64 (page 23) Convert from 16-bit (2-byte) to 64-bit (8-byte) format.

• CV64TO16 (page 24) Convert from 64-bit (8-byte) to 16-bit (2-byte) format.

Error Procedure

• XERROR (page 142) Print error message.

• XERRWV (page 144)/XERRWD (page 143) Print error message with value(s).

• XSETUN (page 146) Set error message unit number.

• XSETF (page 145) Set error message control flag.

• IXSAV Internal routine for XERRWV, etc.

PMATH Reference Manual - 18

Routines New to PMATH Explained
This section contains descriptions of PMATH routines that were not in MATHLIB.

Vectorized RANF

(See Principle 2.2 (page 7), above.) The following Fortran interface has been defined for the portable
equivalent of the compiler-generated RANFV.

Usage:

INTEGER N REAL RANOUT(n) or
DOUBLE PRECISION RANOUT(n) or
REAL*8 RANOUT(n)

CALL SRANFV(N,RANOUT) or
CALL DRANFV(N,RANOUT) or
CALL RANFV8(N,RANOUT)

Arguments:
N (in) Number of random numbers to be generated.
RANOUT (out) Vector of N random numbers between 0 and 1.
 The actual dimension of RANOUT must satisfy n>=N.

Description:
SRANFV/DRANFV/RANFV8 generates pseudorandom numbers lying strictly between 0 and 1. The above
call is equivalent to the loop:

 DO 10 I=1,N
 RANOUT(I) = RANF()
 10 CONTINUE

where RANF is SRANF/DRANF/RANF8 for SRANFV/DRANFV/RANFV8, respectively. Note that
SRANFV/DRANFV/RANFV8 may be significantly faster for large N. (The actual timing is likely to be
platform-dependent.) The current implementation merely contains a DO-loop, as per the specification.

Portable Seed-Passing Module

(See Principle 2.5 (page 7), above.) A pair of routines, C V 16T O 64 and C V 64T O 16, has been
developed to facilitate moving random number seeds (which are 48-bit integers) to or between 32-bit
platforms. The output from RNSGET (RLSGET) can be unpacked via CV64TO16 and written for export
with a 3Z4 format. The integers may then be read with this same format, repacked via CV16TO64, and
used as the argument to RNSSET (RLSSET). Multipliers for RNMSET (RLMSET) can also be constructed
via CV16TO64.

It is intended that these routines be used as follows:

(for RANF family) (for RLGF family)
REAL*8 RNSGET, SEED or REAL*8 RLSGET, SEED
INTEGER ISEED(3)

PMATH Reference Manual - 19

 [Compute for a while.]
SEED = RNSGET () or SEED = RLSGET ()
CALL CV64TO16 (SEED, ISEED)
[Write ISEED to dumpfile via FORMAT(3Z4).]
 . . .
[In restart code, read ISEED via FORMAT(3Z4).]
CALL CV16TO64 (ISEED, SEED)
CALL RNSSET (SEED) or CALL RLSSET (SEED)
[Continue computation.]

The Fortran interface for CV16TO64 is as follows:

Usage:

INTEGER IN16(3)
REAL*8 OUT64
CALL CV16TO64 (IN16, OUT64)

Arguments:
IN16 (in) An array containing three 16-bit integers.
OUT64 (out) The result of packing these into the low-order
 bits of a 64-bit word.
 Its leftmost 16 bits will be zero;
 its rightmost 16 bits will be from IN16(3).

Description:
 +---+
 OUT64 = | 0 | IN16(1) | IN16(2) | IN16(3) |
 +---+

The Fortran interface for CV64TO16 is as follows:

Usage:

REAL*8 IN64
INTEGER OUT16(3)
CALL CV64TO16 (IN64, OUT16)

Arguments:
IN64 (in) The 64-bit quantity to be converted.
OUT16 (out) An array of 16-bit quantities containing the
 rightmost 48 bits from IN64.
 The rightmost 16 bits will be in OUT16(3).

Description:
 +---+
IN64 = | ignored | OUT16(1) | OUT16(2) | OUT16(3) |
 +---+

This C module is contained in pmath_cnv.c, which requires the header files pm_params.h and
pm_cnvset.h to set up correct Fortran binding. Because of problems with C on the CRAYs, the former
CRAY version had been written in LRLTRAN (CIVIC) code.

PMATH Reference Manual - 20

PMATH Routine Descriptions
The subsections of this section each contain a descriptive prolog for one PMATH subroutine, arranged

in alphabetical order by routine name. Included is the calling sequence and other usage details. To see a
task-oriented overview of the PMATH library, consult the earlier section called PMATH Routines Grouped
by Function (page 16).

PMATH Reference Manual - 21

AAAAAA

 SUBROUTINE AAAAAA (VER)
 ***BEGIN PROLOGUE AAAAAA
 ***PURPOSE LLNL Portable Mathematical Library disclaimer and version.
 ***LIBRARY PMATH
 ***CATEGORY Z
 ***TYPE ALL (AAAAAA-A)
 ***KEYWORDS DISCLAIMER, DOCUMENTATION, VERSION
 ***AUTHOR LC Mathematical Software Service
 ***DESCRIPTION

 PMATH is a portable version of MATHLIB, the standard mathematical
 library for LLNL Cray's and earlier machines. These routines are
 distributed exclusively for use in support of LLNL programs. Check
 with the LLNL Code Release Center or the LC Client Services HotLine,
 (510)422-4531, before moving this source code to a non-LLNL system.

 +--+
 + * * * * * Notice * * * * * +
 + +
 + This material was prepared as an account of work sponsored +
 + by the United States government. Neither the United +
 + States government nor any of their employees, nor any of +
 + their contractors, subcontractors, or their employees, +
 + makes any warranty, expressed or implied, or assumes any +
 + legal liability or responsibility for the accuracy, +
 + completeness or usefulness of any information, apparatus, +
 + product or process disclosed, or represents that its use +
 + would not infringe privately-owned rights. +
 +--+

 *Usage:

 CHARACTER*24 VER

 CALL AAAAAA (VER)

 *Arguments:

 VER:OUT will contain the version number of PMATH.

 *Description:

 This routine contains the PMATH disclaimer and can be used to
 return the library version number.

 ***END PROLOGUE AAAAAA

PMATH Reference Manual - 22

CV16TO64

 ***BEGIN PROLOGUE CV16TO64
 ***PURPOSE Convert from an array of 16-bit quantities to a
 64-bit word.
 ***LIBRARY PMATH
 ***CATEGORY N2
 ***TYPE ALL (CV16TO64-A)
 ***KEYWORDS CONVERSION, PACKING
 ***AUTHOR Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION

 *Usage:
 INTEGER IN16(3)
 REAL*8 OUT64
 CALL CV16TO64 (IN16, OUT64)

 *Arguments:

 IN16 :IN An array containing three 16-bit integers.

 OUT64:OUT The result of packing these into the low-order bits of
 a 64-bit word. Its leftmost 16 bits will be zero; its
 rightmost 16 bits will be from IN16(3).

 *Description:
 +---+
 OUT64 = | 0 | IN16(1) | IN16(2) | IN16(3) |
 +---+

 CV16TO64 and CV64TO16 were developed to facilitate moving random
 number seeds (which are 48-bit integers) to or between 32-bit
 platforms. The output from RNSGET (RLSGET) can be unpacked via
 CV64TO16 and written for export with a 3Z4 format. The integers
 may then be read with this same format, repacked via CV16TO64, and
 used as the argument to RNSSET (RLSSET). Multipliers for RNMSET
 (RLMSET) can also be constructed via CV16TO64.

 *See also:
 See CV64TO16 description for an example.

 *Portability:
 This C routine is contained in pmath_cnv.c, which requires header
 files pm_params.h and pm_cnvset.h to set up correct Fortran binding.

 ***END PROLOGUE CV16TO64

PMATH Reference Manual - 23

CV64TO16

 ***BEGIN PROLOGUE CV64TO16
 ***PURPOSE Convert from a 64-bit word to an array of 16-bit
 quantities.
 ***LIBRARY PMATH
 ***CATEGORY N2
 ***TYPE ALL (CV64TO16-A)
 ***KEYWORDS CONVERSION, UNPACKING
 ***AUTHOR Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION

 *Usage:
 REAL*8 IN64
 INTEGER OUT16(3)
 CALL CV64TO16 (IN64, OUT16)

 *Arguments:

 IN64 :IN The 64-bit quantity to be converted.

 OUT16:OUT An array of 16-bit quantities containing the rightmost
 48 bits from IN64. The rightmost 16 bits will be in
 OUT16(3).

 *Description:
 +---+
 IN64 = | ignored | OUT16(1) | OUT16(2) | OUT16(3) |
 +---+

 CV16TO64 and CV64TO16 were developed to facilitate moving random
 number seeds (which are 48-bit integers) to or between 32-bit
 platforms. The output from RNSGET (RLSGET) can be unpacked via
 CV64TO16 and written for export with a 3Z4 format. The integers
 may then be read with this same format, repacked via CV16TO64, and
 used as the argument to RNSSET (RLSSET).

 *Example:
 (for RANF family) (for RLGF family)
 REAL*8 RNSGET, SEED or REAL*8 RLSGET, SEED
 INTEGER ISEED(3)
 < Compute for a while. >
 SEED = RNSGET () or SEED = RLSGET ()
 CALL CV64TO16 (SEED, ISEED)
 < Write ISEED to dumpfile via FORMAT (3Z4). >
 .
 .
 .
 < In restart code, read ISEED via FORMAT (3Z4). >
 CALL CV16TO64 (ISEED, SEED)
 CALL RNSSET (SEED) or CALL RLSSET (SEED)
 < Continue computation. >

 *Portability:
 This C routine is contained in pmath_cnv.c, which requires header
 files pm_params.h and pm_cnvset.h to set up correct Fortran binding.

 ***END PROLOGUE CV64TO16

PMATH Reference Manual - 24

DCONST

 DOUBLE PRECISION FUNCTION DCONST (NAME)
 ***BEGIN PROLOGUE DCONST
 ***PURPOSE Provides values for common mathematical constants.
 ***LIBRARY PMATH
 ***CATEGORY R1
 ***TYPE DOUBLE PRECISION (SCONST-S, DCONST-D, CONST8-8)
 ***KEYWORDS CONSTANTS, PI, TWOPI, PI180, PI3, TWOPI3, FOURPI3, UROUND,
 ONE3, ONE27
 ***AUTHOR Basinger, R.C., (LLNL/CMRD)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine CONSTANT.)
 *Usage:
 CHARACTER*n NAME
 DOUBLE PRECISION VALUE, DCONST

 NAME = 'name'
 VALUE = DCONST (NAME)
 or
 VALUE = DCONST ('name')

 *Arguments:
 NAME :IN Name of the desired constant. Valid names and their
 meanings are:

 I Name Value Meaning
 - --------- -------- -------------------------------
 1 'pi' pi PI = 4.0*ATAN(1.0)
 2 'twopi' 2pi 2.0*PI
 3 'pi180' pi/180 PI/180.0
 4 'pi3' pi/3 PI/3.0
 5 'twopi3' 2pi/3 2.0*PI/3.0
 6 'fourpi3' 4pi/3 4.0*PI/3.0
 7 'uround' unit The smallest positive floating-
 roundoff point number such that
 1.0 + 'uround' .NE. 1.0
 8 'one3' 1/3 1.0/3.0
 9 'one27' 1/27 1.0/27.0

 Here "pi" in the Value column represents the Greek letter pi,
 the standard notation for the ratio of the circumference to the
 diameter of a circle.

 The name of the constant may be given in either upper or lower
 case (but not mixed case).

 *Function Return Values:
 VALUE : the value of the named constant.

 *Description:
 DCONST provides values for commonly used mathematical constants.
 This provides a machine-independent way to obtain correct values
 for these constants.

 *Accuracy:

PMATH Reference Manual - 25

 All values except for element 7 are data-loaded with 32-digit
 decimal constants generated using Macsyma. We rely on the
 compiler generating correctly rounded machine values from them.
 SCONST('uround') is obtained from RUMACH.

 *Cautions:
 The present version terminates with a STOP statement if NAME is
 not a valid name.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DUMACH
 ***REVISION HISTORY (YYMMDD)
 820514 DATE WRITTEN
 (The above is the date found in the source code. It may be
 an underestimate of the age of this routine.)
 890224 Added SLATEC/LDOC prologue. (FNF)
 890301 Made changes to comments per feedback from Tok. (FNF)
 890301 Replaced double quote (") as string delimiter in DATA
 statements with the ANSI standard single quote ('). (FNF)
 900627 Changed hexidecimal constants from CIVIC to CFT77 form.(FNF)
 920313 Made minor cosmetic changes and changed DATA-loaded value
 of N to the actual number of available constants. (FNF)
 920316 Modified to recognize either upper or lower case names.
 Removed the common blocks in the process. (FNF)
 920319 Updated with prologue edited 891025 by G. Shaw for manual.
 930823 1. Replaced calls to BASELIB routine ZVSEEK with a loop.
 2. Rearranged DATA statements to facilitate subsequent
 changes. (FNF)
 930824 Changed names from INTEGER to the more standard CHARACTER
 type. (FNF)
 930826 Eliminated distinction between N, the number of constants,
 and the dimensions of the arrays. (FNF)
 930830 Added decimal values, surrounded by suitable comments, for
 all constants except machine precision. (FNF)
 ***END PROLOGUE DCONST

PMATH Reference Manual - 26

DCORRV

 SUBROUTINE DCORRV (VCV, M, WK)
 ***BEGIN PROLOGUE DCORRV
 ***PURPOSE Calculate the correlation matrix from the variance-
 covariance matrix.
 ***LIBRARY PMATH
 ***CATEGORY L1B
 ***TYPE DOUBLE PRECISION (SCORRV-S, DCORRV-D, CORRV8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, CORRELATION MATRIX
 ***AUTHOR Unknown, Name (LLNL/USD/NMG)
 Durst, Mark J. (LLNL/CMRD/SPG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine CORRV.)
 *Usage:
 INTEGER M
 PARAMETER (nvcv = (M*(M+1))/2)
 DOUBLE PRECISION VCV(nvcv), WK(M)
 CALL DCORRV (VCV, M, WK)

 *Arguments:
 VCV:INOUT Input: Array of order M(M + 1)/2 containing the
 variance-covariance matrix in symmetric storage mode.
 Output: Array containing the correlation matrix in
 symmetric storage mode.
 M :IN Number of variables for which correlations are
 calculated.
 WK :WORK Work array of order M.

 *Description:
 DCORRV calculates the correlation matrix from the variance-
 covariance matrix stored in VCV in symmetric storage mode. The
 correlation matrix will replace VCV on return.

 "Symmetric storage mode" means (S is taken to be the full matrix):

 VCV(k) = S(i,j), k = (i(i - 1))/2 + j, i = 1,...,M, j <= i

 *See Also:
 DCORRV can be used in conjunction with DCOVAR to obtain both the
 variance-covariance and correlation matrices.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 (The above is the date of LCSD-442,Rev.1 and is undoubtedly
 a significant underestimate of the age of this routine.)
 890223 Added SLATEC/LDOC prologue. (FNF)
 ***END PROLOGUE DCORRV

PMATH Reference Manual - 27

DCOVAR

 SUBROUTINE DCOVAR (A, N, M, IND, VCV, SD, WK)
 ***BEGIN PROLOGUE DCOVAR
 ***PURPOSE Variance-covariance or correlation matrix of a
 two-dimensional real array.
 Calculates the standard deviations and the variance-
 covariance or correlation matrix for N observations on
 each of M variables.
 ***LIBRARY PMATH
 ***CATEGORY L1B
 ***TYPE DOUBLE PRECISION (SCOVAR-S, DCOVAR-D, COVAR8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, STANDARD DEVIATION, VECTOR,
 VARIANCE-COVARIANCE MATRIX, CORRELATION MATRIX
 ***AUTHOR Unknown, Name (LLNL/USD/NMG)
 Durst, Mark J. (LLNL/CMRD/SPG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine COVARV.)
 *Usage:
 INTEGER N, M, IND
 PARAMETER (nvcv = (M*(M+1))/2)
 DOUBLE PRECISION A(N,M), VCV(nvcv), SD(M), WK(M)
 CALL DCOVAR (A, N, M, IND, VCV, SD, WK)

 *Arguments:
 A :IN N by M array of N observations on M variables.
 N :IN Row dimension of A.
 M :IN Column dimension of A.
 IND:IN Job-control flag:
 0 Return the variance-covariances.
 non-0 Return correlations.
 VCV:OUT Array of order M(M+1)/2 containing either the
 variance-covariances or correlations in symmetric
 storage mode, depending on the value of IND.
 SD :OUT Array of order M containing the standard deviations.
 WK:WORK Work array of order M.

 *Description:
 DCOVAR calculates the standard deviation in SD and the
 variance-covariance matrix in VCV in symmetric storage mode. If
 IND does not equal 0, it them calls DCORRV to calculate the
 correlation matrix from the variance-covariance matrix.

 "Symmetric storage mode" meads (S is taken to be the full matrix):

 VCV(k) = S(i,j), k = (1(i-1))/2 + j, i = 1,...,M, j <=1

 *See Also:
 If both the variance-covariance matrix and the correlation matrix
 are required, first call DCOVAR with IND = 0. Then copy VCV into
 the desired array for the correlation matrix and call DCORRV.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED DCORRV
 ***REVISION HISTORY (YYMMDD)

PMATH Reference Manual - 28

 830812 DATE WRITTEN
 (The above is the date of LCSD-442,Rev.1 and is undoubtedly
 a significant underestimate of the age of this routine.)
 890223 Added SLATEC/LDOC prologue. (FNF)
 890518 Modified sequence numbers to fit in columns 73-80. (FNF)
 890518 1. Replaced expr**.5 with sqrt(expr)--one occurrence. (FNF)
 2. Corrected dimension for array VCV. (FNF)
 890519 Eliminated redundant variable ink.
 920319 Updated with prologue edited 891025 by G. Shaw for manual.
 930706 Corrected C***CATEGORY line. (FNF)
 930930 Converted old UNICOS names to S- or I-names. (DBP)
 931005 Corrected list of equivalent routines, made sure that all
 variables are declared, and improved comments. (FNF)
 931018 Produced double precision version. (DBP)
 931026 Minor changes to reduce single/double differences. (FNF)
 931029 Changed back to generic intrinsics. (FNF)
 940421 Improved purpose. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE DCOVAR

PMATH Reference Manual - 29

DFITPO

 SUBROUTINE DFITPO (XDATA, YDATA, NDATA, NTERMS, WEIGHT, COEFF,
 + RSD2, WORK, JOB, IERR)
 ***BEGIN PROLOGUE DFITPO
 ***PURPOSE Fit a polynomial to given data.
 Finds the polynomial that is the best least-squares
 fit to a given set of data points.
 ***LIBRARY PMATH
 ***CATEGORY K1A1A2, L8B1B1
 ***TYPE DOUBLE PRECISION (SFITPO-S, DFITPO-D, FITPO8-8)
 ***KEYWORDS POLYNOMIAL FITTING, LEAST SQUARES
 ***AUTHOR Painter, Jeffrey F., (LLNL/CMRD)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine FITPOL.)
 *Usage:
 INTEGER NDATA, NTERMS, JOB, IERR
 PARAMETER (NWORK = (NDATA+1)*(NTERMS+1))
 DOUBLE PRECISION XDATA(NDATA), YDATA(NDATA), WEIGHT(NDATA),
 * COEFF(NTERMS), RSD2, WORK(NWORK)

 CALL DFITPO (XDATA, YDATA, NDATA, NTERMS, WEIGHT, COEFF,
 * RSD2, WORK, JOB, IERR)

 *Arguments:
 In the following, the data points are
 (x(i),y(i)) = (XDATA(i), YDATA(i)), i=1,...,NDATA.

 XDATA :IN Array of values of the independent variable, x, among
 which there must be at least NTERMS different values.
 Its dimension is NDATA.

 YDATA :IN Array of corresponding values of the dependent
 variable, y. Its dimension is NDATA.

 NDATA :IN The number of data points to be fit.

 NTERMS:IN The number of terms in the polynomial (i.e., DFITPO
 is to determine a polynomial of degree NTERMS - 1).
 If NTERMS > NDATA, the result will be the coefficients
 of an interpolating polynomial of degree NDATA-1, and
 COEFF(j) = 0 for j > NDATA.

 WEIGHT:IN Optional weight array.

 If WEIGHT(1) is equal to zero, DFITPO will choose
 COEFF to minimize the sum of the squares of the
 residuals. In this case, WEIGHT need not be
 dimensioned and can, indeed, be the literal 0.D0.

 Otherwise, WEIGHT must be an array of dimension
 NDATA, with WEIGHT(1) nonzero, and DFITPO will choose
 COEFF to minimize the sum of the squares of the
 weighted residuals,
 R(i) = WEIGHT(i)*(y(i) - p(x(i))), i=1,2,...,NDATA.
 (See Description, below, for definition of p(x).)

PMATH Reference Manual - 30

 COEFF:OUT Array containing the NTERMS coefficients of the poly-
 nomial. COEFF(j) is the coefficient of x**(j-1).

 RSD2 :OUT Sum of the squares of the (weighted) residuals
 corresponding to COEFF.

 WORK :WORK Array used primarily for internal computations. NWORK,
 its dimension, must be at least (NDATA+1)*(NTERMS+1).
 If JOB is nonzero, the first NDATA words of WORK will
 contain the residuals (or weighted residuals, if the
 weighting option was chosen) on return:
 WORK(i) = R(i), i = 1,2,...,NDATA.
 Note that if DREFIT is to be used for subsequent fits,
 WORK must not be modified in any way.

 JOB :IN Residuals-computation flag:
 non-0 Residuals are computed and output in WORK.
 0 Residuals are not completely computed,
 although RSD2 is computed. (This option will
 more efficient if the R(i) are not required.)

 IERR :OUT Error flag. On normal termination, IERR = 0.

 Warning error: IERR <= -4
 In this case the problem looks poorly conditioned,
 so that all components of COEFF may be inaccurate.
 10**(-IERR) will be a lower bound for the condition
 number, and COEFF will be computed anyway.
 (See "Accuracy" below for details.)

 Fatal error:
 DQRSL returned INFO=IERR: 0 < IERR <= NTERMS
 A singular matrix has been detected. This may be
 due to too many values of XDATA(i) exactly equal
 or too many weights equal to zero.
 COEFF has not been computed in this case.

 *Description:
 DFITPO finds the polynomial that is the best least-squares fit to
 a given set of data points

 (x(i),y(i)) = (XDATA(i),YDATA(i)), i = 1, 2, ..., NDATA .

 It finds coefficients COEFF(1), ..., COEFF(NTERMS) of the
 polynomial

 y = p(x) = COEFF(1) + COEFF(2)*x + COEFF(3)*x**2 + ...
 + COEFF(NTERMS)*x**(NTERMS-1) ,

 which minimize the sum of the squares of the residuals

 R(i) = y(i) - p(x(i)), i = 1, 2, ..., NDATA .

 As an option, the residuals may be weighted, as noted above.

 If the range of x-values is far from zero, DFITPO may introduce
 extra inaccuracies in the results, especially in lower-order
 coefficients. A way to get better results is to choose a typical
 value of x, say x0, and define

PMATH Reference Manual - 31

 xnew(i) = x(i) - x0, i = 1, 2, ..., NDATA .

 Then instead of

 CALL DFITPO (x, ...)

 use

 CALL DFITPO (xnew, ...) .

 The result will be coefficients for the polynomial

 y = p(xnew) = p(x-x0) .

 Let A denote the matrix whose i-th row is

 (1 XDATA(i) XDATA(i)**2 XDATA(i)**(NTERMS-1))

 (This row is multiplied by WEIGHT(i) if the weighting option has
 been chosen.) A is called the least-squares matrix. The solution
 to the least-squares problem is found by way of a QR decomposition
 of A, without pivoting, using LINPACK routines DQRDC and DQRSL.

 The covariance matrix of COEFF can be estimated after a call of
 DFITPO. If all the data points y = YDATA(i) have the same
 variance v(y), then the covariance matrix is v(y) times the
 inverse of the product of A-transpose (denoted At) and A:

 cov = v(y) * inv(At*A) ,

 An estimate of v(y) is RSD2/(NDATA - NTERMS). The following
 call of a LINPACK subroutine (Ref. 1) will compute inv(At*A):

 CALL DPODI (WORK(2+NDATA), NDATA, NTERMS, DUMMY, 1)

 where WORK, NDATA, and NTERMS are the same variables as in
 DFITPO, WORK has not been disturbed since the last DFITPO call,
 and DUMMY is not referenced. Only WORK is changed. For i <= j,
 DPODI puts the (i,j)th element of inv(At*A) (which equals the
 (j,i)th element) into WORK(i+j*NDATA+1). CAUTION: Since this
 changes WORK, DREFIT cannot be called after such a call of DPODI.

 Sometimes an expression involving inv(At*A) can be evaluated
 without computing the inverse; if so, and if NTERMS is large, it
 will be cheaper not to compute the inverse. An equation of the
 form

 (At*A) * w = b

 can best be solved for w by the following call of a LINPACK
 routine (Ref. 1):

 CALL DPOSL (WORK(2+NDATA), NDATA, NTERMS, BW)

 where WORK, NDATA, and NTERMS are input variables, undisturbed
 since the last DFITPO call, and BW is a real vector of dimension
 NTERMS. On input, BW is b, and on output, it is w. Since DPOSL
 does not change WORK, you may call DREFIT or DPOSL after calling

PMATH Reference Manual - 32

 DPOSL.

 *Examples:
 See the DREFIT writeup for a sample call of DFITPO.

 The following sample code is a faster way to evaluate the
 polynomial Y = p(X) than the most straightforward approach.

 Y = COEFF(NTERMS)
 DO 10 J = 1, (NTERMS - 1)
 10 Y = X*Y + COEFF(NTERMS - J)

 *Accuracy:
 DFITPO finds a lower bound for the condition number K of the
 problem. This number is relevant because DFITPO will introduce an
 error in each COEFF(j) (j = 1,2,...,NTERMS) that is roughly
 proportional to K times the largest of these coefficients (larger
 if there are large values of x in the data). If the condition-
 number estimate is over 10,000, then the error flag IERR will be
 set to a negative number so that K is greater than 10**(|IERR|).
 It is unlikely that K will be any larger than 10**(|IERR| + 2).
 As a rule of thumb, this means that the largest of the
 coefficients may have lost about |IERR| + 2 digits of accuracy.
 The same absolute error estimate applies to all of the
 coefficients; thus, if COEFF(j) is smaller than the largest
 coefficient by a factor of 10**n, it will have lost |IERR| + 2 + n
 digits of accuracy. If some values of x are large and if NTERMS
 is large, then lower-order coefficients will be less accurate.
 For details, see Ref. 1, pp. I.8-I.11 and 9.4-9.5, and Ref. 2,
 pp. 28-35.

 The above discussion applies to the mathematical fitting problem;
 of course there may be other inaccuracies from the input data.
 Furthermore, the polynomial computed when IERR < 0 may be
 perfectly acceptable if all one needs is a function that produces
 small residuals.

 *Cautions:
 DFITPO assumes 1 <= NTERMS, NDATA. This is not checked.
 See description of NTERMS for behavior when NTERMS > NDATA.

 This is a simple program for simple problems. It is not
 recommended for large problems.

 *Portability:
 This routine calls the LINPACK routines DQRDC and DQRSL, and BLAS
 (Basic Linear Algebra Subprograms) DDOT.

 The declaration REAL WORK(NDATA,*) is used to cause the
 compiler to generate suitable subscript arithmetic for the
 NDATA by NTERMS least-squares matrix stored starting at element
 WORK(2,2) = WORK(NDATA+2). Some compilers may object to
 the fact that (I+1)>NDATA when I=NDATA in loops 10, 30 and 50.
 ***ROUTINES CALLED DDOT, DQRDC, DQRSL
 ***REVISION HISTORY (YYMMDD)
 800301 DATE WRITTEN
 890419 Added SLATEC/LDOC prologue. (FNF)
 890424 Corrected DATE WRITTEN. (FNF)
 890518 Modified sequence numbers to fit in columns 73-80. (FNF)

PMATH Reference Manual - 33

 920319 Updated with prologue edited 891025 by G. Shaw for manual.
 920331 Reformatted references section. (FNF)
 930706 Corrected C***CATEGORY line. (FNF)
 930930 Converted old UNICOS names to S- or I-names. (DBP)
 931005 Augmented list of equivalent routines, made sure that all
 variables are declared, and improved comments. (FNF)
 931018 Produced double precision version. (DBP)
 931026 Minor changes to reduce single/double differences. (FNF)
 931029 Changed back to generic intrinsics. (FNF)
 ***END PROLOGUE DFITPO

PMATH Reference Manual - 34

DLSODE

 SUBROUTINE DLSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
 + ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)
 ***BEGIN PROLOGUE DLSODE
 ***PURPOSE Livermore solver for ordinary differential equations.
 Solves the initial-value problem for stiff or nonstiff
 systems of first-order ODE's,
 dy/dt = f(t,y), or, in component form,
 dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(N)), i=1,...,N.
 ***LIBRARY PMATH (ODEPACK)
 ***CATEGORY I1A1B, I1A2
 ***TYPE DOUBLE PRECISION (SLSODE-S, DLSODE-D, LSODE8-8)
 ***KEYWORDS ORDINARY DIFFERENTIAL EQUATIONS, INITIAL VALUE PROBLEM,
 STIFF, NONSTIFF
 ***AUTHOR Hindmarsh, Alan C., (LLNL)
 Center for Computational Sciences and Engrg., L-316
 Lawrence Livermore National Laboratory
 Livermore, CA 94550.
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine LSODE.)

 NOTE: The DLSODE solver is not re-entrant, and so is usable on
 the Cray multi-processor machines only if it is not used
 in a multi-tasking environment.
 If re-entrancy is required, use NLSODE instead.

 The formats of the DLSODE and NLSODE writeups differ from
 those of the other MATHLIB routines.

 The "Usage" and "Arguments" sections treat only a subset of
 available options, in condensed fashion. The options
 covered and the information supplied will support most
 standard uses of DLSODE.

 For more sophisticated uses, full details on all options are
 given in the concluding section, headed "Long Description."
 A synopsis of the DLSODE Long Description is provided at the
 beginning of that section; general topics covered are:
 - Elements of the call sequence; optional input and output
 - Optional supplemental routines in the DLSODE package
 - internal COMMON block

 *Usage:
 Communication between the user and the DLSODE package, for normal
 situations, is summarized here. This summary describes a subset
 of the available options. See "Long Description" for complete
 details, including optional communication, nonstandard options,
 and instructions for special situations.

 A sample program is given in the "Examples" section.

 Refer to the argument descriptions for the definitions of the
 quantities that appear in the following sample declarations.

 For MF = 10,
 PARAMETER (LRW = 20 + 16*NEQ, LIW = 20)
 For MF = 21 or 22,

PMATH Reference Manual - 35

 PARAMETER (LRW = 22 + 9*NEQ + NEQ**2, LIW = 20 + NEQ)
 For MF = 24 or 25,
 PARAMETER (LRW = 22 + 10*NEQ + (2*ML+MU)*NEQ,
 * LIW = 20 + NEQ)

 EXTERNAL F, JAC
 INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK(LIW),
 * LIW, MF
 DOUBLE PRECISION Y(NEQ), T, TOUT, RTOL, ATOL(ntol), RWORK(LRW)

 CALL DLSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
 * ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)

 *Arguments:
 F :EXT Name of subroutine for right-hand-side vector f.
 This name must be declared EXTERNAL in calling
 program. The form of F must be:

 SUBROUTINE F (NEQ, T, Y, YDOT)
 INTEGER NEQ
 DOUBLE PRECISION T, Y(NEQ), YDOT(NEQ)

 The inputs are NEQ, T, Y. F is to set

 YDOT(i) = f(i,T,Y(1),Y(2),...,Y(NEQ)),
 i = 1, ..., NEQ .

 NEQ :IN Number of first-order ODE's.

 Y :INOUT Array of values of the y(t) vector, of length NEQ.
 Input: For the first call, Y should contain the
 values of y(t) at t = T. (Y is an input
 variable only if ISTATE = 1.)
 Output: On return, Y will contain the values at the
 new t-value.

 T :INOUT Value of the independent variable. On return it
 will be the current value of t (normally TOUT).

 TOUT :IN Next point where output is desired (.NE. T).

 ITOL :IN 1 or 2 according as ATOL (below) is a scalar or
 an array.

 RTOL :IN Relative tolerance parameter (scalar).

 ATOL :IN Absolute tolerance parameter (scalar or array).
 If ITOL = 1, ATOL need not be dimensioned.
 If ITOL = 2, ATOL must be dimensioned at least NEQ.

 The estimated local error in Y(i) will be controlled
 so as to be roughly less (in magnitude) than

 EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or
 EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2.

 Thus the local error test passes if, in each
 component, either the absolute error is less than
 ATOL (or ATOL(i)), or the relative error is less
 than RTOL.

PMATH Reference Manual - 36

 Use RTOL = 0.0 for pure absolute error control, and
 use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative
 error control. Caution: Actual (global) errors may
 exceed these local tolerances, so choose them
 conservatively.

 ITASK :IN Flag indicating the task DLSODE is to perform.
 Use ITASK = 1 for normal computation of output
 values of y at t = TOUT.

 ISTATE:INOUT Index used for input and output to specify the state
 of the calculation.
 Input:
 1 This is the first call for a problem.
 2 This is a subsequent call.
 Output:
 2 DLSODE was successful (otherwise, negative).
 Note that ISTATE need not be modified after a
 successful return.
 -1 Excess work done on this call (perhaps wrong
 MF).
 -2 Excess accuracy requested (tolerances too
 small).
 -3 Illegal input detected (see printed message).
 -4 Repeated error test failures (check all
 inputs).
 -5 Repeated convergence failures (perhaps bad
 Jacobian supplied or wrong choice of MF or
 tolerances).
 -6 Error weight became zero during problem
 (solution component i vanished, and ATOL or
 ATOL(i) = 0.).

 IOPT :IN Flag indicating whether optional inputs are used:
 0 No.
 1 Yes. (See "Optional inputs" under "Long
 Description," Part 1.)

 RWORK :WORK Real work array of length at least:
 20 + 16*NEQ for MF = 10,
 22 + 9*NEQ + NEQ**2 for MF = 21 or 22,
 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25.

 LRW :IN Declared length of RWORK (in user's DIMENSION
 statement).

 IWORK :WORK Integer work array of length at least:
 20 for MF = 10,
 20 + NEQ for MF = 21, 22, 24, or 25.

 If MF = 24 or 25, input in IWORK(1),IWORK(2) the
 lower and upper Jacobian half-bandwidths ML,MU.

 On return, IWORK contains information that may be
 of interest to the user:

 Name Location Meaning
 ----- --------- ---
 NST IWORK(11) Number of steps taken for the problem so

PMATH Reference Manual - 37

 far.
 NFE IWORK(12) Number of f evaluations for the problem
 so far.
 NJE IWORK(13) Number of Jacobian evaluations (and of
 matrix LU decompositions) for the problem
 so far.
 NQU IWORK(14) Method order last used (successfully).
 LENRW IWORK(17) Length of RWORK actually required. This
 is defined on normal returns and on an
 illegal input return for insufficient
 storage.
 LENIW IWORK(18) Length of IWORK actually required. This
 is defined on normal returns and on an
 illegal input return for insufficient
 storage.

 LIW :IN Declared length of IWORK (in user's DIMENSION
 statement).

 JAC :EXT Name of subroutine for Jacobian matrix (MF =
 21 or 24). If used, this name must be declared
 EXTERNAL in calling program. If not used, pass a
 dummy name. The form of JAC must be:

 SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
 INTEGER NEQ, ML, MU, NROWPD
 DOUBLE PRECISION T, Y(NEQ), PD(NROWPD,NEQ)

 See item c, under "Description" below for more
 information about JAC.

 MF :IN Method flag. Standard values are:
 10 Nonstiff (Adams) method, no Jacobian used.
 21 Stiff (BDF) method, user-supplied full Jacobian.
 22 Stiff method, internally generated full
 Jacobian.
 24 Stiff method, user-supplied banded Jacobian.
 25 Stiff method, internally generated banded
 Jacobian.

 *Description:
 DLSODE solves the initial value problem for stiff or nonstiff
 systems of first-order ODE's,

 dy/dt = f(t,y) ,

 or, in component form,

 dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ))
 (i = 1, ..., NEQ) .

 DLSODE is a package based on the GEAR and GEARB packages, and on
 the October 23, 1978, version of the tentative ODEPACK user
 interface standard, with minor modifications.

 The steps in solving such a problem are as follows.

 a. First write a subroutine of the form

 SUBROUTINE F (NEQ, T, Y, YDOT)
PMATH Reference Manual - 38

 INTEGER NEQ
 DOUBLE PRECISION T, Y(NEQ), YDOT(NEQ)

 which supplies the vector function f by loading YDOT(i) with
 f(i).

 b. Next determine (or guess) whether or not the problem is stiff.
 Stiffness occurs when the Jacobian matrix df/dy has an
 eigenvalue whose real part is negative and large in magnitude
 compared to the reciprocal of the t span of interest. If the
 problem is nonstiff, use method flag MF = 10. If it is stiff,
 there are four standard choices for MF, and DLSODE requires the
 Jacobian matrix in some form. This matrix is regarded either
 as full (MF = 21 or 22), or banded (MF = 24 or 25). In the
 banded case, DLSODE requires two half-bandwidth parameters ML
 and MU. These are, respectively, the widths of the lower and
 upper parts of the band, excluding the main diagonal. Thus the
 band consists of the locations (i,j) with

 i - ML <= j <= i + MU ,

 and the full bandwidth is ML + MU + 1 .

 c. If the problem is stiff, you are encouraged to supply the
 Jacobian directly (MF = 21 or 24), but if this is not feasible,
 DLSODE will compute it internally by difference quotients (MF =
 22 or 25). If you are supplying the Jacobian, write a
 subroutine of the form

 SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
 INTEGER NEQ, ML, MU, NRWOPD
 DOUBLE PRECISION Y, Y(NEQ), PD(NROWPD,NEQ)

 which provides df/dy by loading PD as follows:
 - For a full Jacobian (MF = 21), load PD(i,j) with df(i)/dy(j),
 the partial derivative of f(i) with respect to y(j). (Ignore
 the ML and MU arguments in this case.)
 - For a banded Jacobian (MF = 24), load PD(i-j+MU+1,j) with
 df(i)/dy(j); i.e., load the diagonal lines of df/dy into the
 rows of PD from the top down.
 - In either case, only nonzero elements need be loaded.

 d. Write a main program that calls subroutine DLSODE once for each
 point at which answers are desired. This should also provide
 for possible use of logical unit 6 for output of error messages
 by DLSODE.

 Before the first call to DLSODE, set ISTATE = 1, set Y and T to
 the initial values, and set TOUT to the first output point. To
 continue the integration after a successful return, simply
 reset TOUT and call DLSODE again. No other parameters need be
 reset.

 *Examples:
 The following is a simple example problem, with the coding needed
 for its solution by DLSODE. The problem is from chemical kinetics,
 and consists of the following three rate equations:

 dy1/dt = -.04*y1 + 1.E4*y2*y3
 dy2/dt = .04*y1 - 1.E4*y2*y3 - 3.E7*y2**2

PMATH Reference Manual - 39

 dy3/dt = 3.E7*y2**2

 on the interval from t = 0.0 to t = 4.E10, with initial conditions
 y1 = 1.0, y2 = y3 = 0. The problem is stiff.

 The following coding solves this problem with DLSODE, using
 MF = 21 and printing results at t = .4, 4., ..., 4.E10. It uses
 ITOL = 2 and ATOL much smaller for y2 than for y1 or y3 because y2
 has much smaller values. At the end of the run, statistical
 quantities of interest are printed.

 EXTERNAL FEX, JEX
 INTEGER IOPT, IOUT, ISTATE, ITASK, ITOL, IWORK(23), LIW, LRW,
 * MF, NEQ
 DOUBLE PRECISION ATOL(3), RTOL, RWORK(58), T, TOUT, Y(3)
 NEQ = 3
 Y(1) = 1.D0
 Y(2) = 0.D0
 Y(3) = 0.D0
 T = 0.D0
 TOUT = .4D0
 ITOL = 2
 RTOL = 1.D-4
 ATOL(1) = 1.D-6
 ATOL(2) = 1.D-10
 ATOL(3) = 1.D-6
 ITASK = 1
 ISTATE = 1
 IOPT = 0
 LRW = 58
 LIW = 23
 MF = 21
 DO 40 IOUT = 1,12
 CALL DLSODE (FEX, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
 * ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JEX, MF)
 WRITE(6,20) T, Y(1), Y(2), Y(3)
 20 FORMAT(' At t =',D12.4,' y =',3D14.6)
 IF (ISTATE .LT. 0) GO TO 80
 40 TOUT = TOUT*10.D0
 WRITE(6,60) IWORK(11), IWORK(12), IWORK(13)
 60 FORMAT(/' No. steps =',i4,', No. f-s =',i4,', No. J-s =',i4)
 STOP
 80 WRITE(6,90) ISTATE
 90 FORMAT(///' Error halt.. ISTATE =',I3)
 STOP
 END

 SUBROUTINE FEX (NEQ, T, Y, YDOT)
 INTEGER NEQ
 DOUBLE PRECISION T, Y(3), YDOT(3)
 YDOT(1) = -.04D0*Y(1) + 1.D4*Y(2)*Y(3)
 YDOT(3) = 3.D7*Y(2)*Y(2)
 YDOT(2) = -YDOT(1) - YDOT(3)
 RETURN
 END

 SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD)
 INTEGER NEQ, ML, MU, NRPD
 DOUBLE PRECISION T, Y(3), PD(NRPD,3)
 PD(1,1) = -.04D0

PMATH Reference Manual - 40

 PD(1,2) = 1.D4*Y(3)
 PD(1,3) = 1.D4*Y(2)
 PD(2,1) = .04D0
 PD(2,3) = -PD(1,3)
 PD(3,2) = 6.D7*Y(2)
 PD(2,2) = -PD(1,2) - PD(3,2)
 RETURN
 END

 The output from this program (on a Cray-1 in single precision)
 is as follows.

 At t = 4.0000e-01 y = 9.851726e-01 3.386406e-05 1.479357e-02
 At t = 4.0000e+00 y = 9.055142e-01 2.240418e-05 9.446344e-02
 At t = 4.0000e+01 y = 7.158050e-01 9.184616e-06 2.841858e-01
 At t = 4.0000e+02 y = 4.504846e-01 3.222434e-06 5.495122e-01
 At t = 4.0000e+03 y = 1.831701e-01 8.940379e-07 8.168290e-01
 At t = 4.0000e+04 y = 3.897016e-02 1.621193e-07 9.610297e-01
 At t = 4.0000e+05 y = 4.935213e-03 1.983756e-08 9.950648e-01
 At t = 4.0000e+06 y = 5.159269e-04 2.064759e-09 9.994841e-01
 At t = 4.0000e+07 y = 5.306413e-05 2.122677e-10 9.999469e-01
 At t = 4.0000e+08 y = 5.494530e-06 2.197825e-11 9.999945e-01
 At t = 4.0000e+09 y = 5.129458e-07 2.051784e-12 9.999995e-01
 At t = 4.0000e+10 y = -7.170603e-08 -2.868241e-13 1.000000e+00

 No. steps = 330, No. f-s = 405, No. J-s = 69

 *Accuracy:
 The accuracy of the solution depends on the choice of tolerances
 RTOL and ATOL. Actual (global) errors may exceed these local
 tolerances, so choose them conservatively.

 *Cautions:
 The work arrays should not be altered between calls to DLSODE for
 the same problem, except possibly for the conditional and optional
 inputs.

 *Portability:
 Since NEQ is dimensioned inside DLSODE, some compilers may object
 to a call to DLSODE with NEQ a scalar variable. In this event,
 use DIMENSION NEQ(1). Similar remarks apply to RTOL and ATOL.

 Note to Cray users:
 For maximum efficiency, use the CFT77 compiler. Appropriate
 compiler optimization directives have been inserted for CFT77
 (but not CIVIC).

 NOTICE: If moving the DLSODE source code to other systems,
 contact the author for notes on nonstandard Fortran usage,
 COMMON block, and other installation details.

 *Reference:
 Alan C. Hindmarsh, "ODEPACK, a systematized collection of ODE
 solvers," in Scientific Computing, R. S. Stepleman, et al., Eds.
 (North-Holland, Amsterdam, 1983), pp. 55-64.

 *Long Description:
 The following complete description of the user interface to
 DLSODE consists of four parts:

PMATH Reference Manual - 41

 1. The call sequence to subroutine DLSODE, which is a driver
 routine for the solver. This includes descriptions of both
 the call sequence arguments and user-supplied routines.
 Following these descriptions is a description of optional
 inputs available through the call sequence, and then a
 description of optional outputs in the work arrays.

 2. Descriptions of other routines in the DLSODE package that may
 be (optionally) called by the user. These provide the ability
 to alter error message handling, save and restore the internal
 COMMON, and obtain specified derivatives of the solution y(t).

 3. Descriptions of COMMON block to be declared in overlay or
 similar environments, or to be saved when doing an interrupt
 of the problem and continued solution later.

 4. Description of two routines in the DLSODE package, either of
 which the user may replace with his own version, if desired.
 These relate to the measurement of errors.

 Part 1. Call Sequence

 Arguments

 The call sequence parameters used for input only are

 F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, MF,

 and those used for both input and output are

 Y, T, ISTATE.

 The work arrays RWORK and IWORK are also used for conditional and
 optional inputs and optional outputs. (The term output here
 refers to the return from subroutine DLSODE to the user's calling
 program.)

 The legality of input parameters will be thoroughly checked on the
 initial call for the problem, but not checked thereafter unless a
 change in input parameters is flagged by ISTATE = 3 on input.

 The descriptions of the call arguments are as follows.

 F The name of the user-supplied subroutine defining the ODE
 system. The system must be put in the first-order form
 dy/dt = f(t,y), where f is a vector-valued function of
 the scalar t and the vector y. Subroutine F is to compute
 the function f. It is to have the form

 SUBROUTINE F (NEQ, T, Y, YDOT)
 DOUBLE PRECISION Y(NEQ), YDOT(NEQ)

 where NEQ, T, and Y are input, and the array YDOT =
 f(T,Y) is output. Y and YDOT are arrays of length NEQ.
 Subroutine F should not alter Y(1),...,Y(NEQ). F must be
 declared EXTERNAL in the calling program.

 Subroutine F may access user-defined quantities in
PMATH Reference Manual - 42

 NEQ(2),... and/or in Y(NEQ(1)+1),..., if NEQ is an array
 (dimensioned in F) and/or Y has length exceeding NEQ(1).
 See the descriptions of NEQ and Y below.

 If quantities computed in the F routine are needed
 externally to DLSODE, an extra call to F should be made
 for this purpose, for consistent and accurate results.
 If only the derivative dy/dt is needed, use DINTDY
 instead.

 NEQ The size of the ODE system (number of first-order
 ordinary differential equations). Used only for input.
 NEQ may be decreased, but not increased, during the
 problem. If NEQ is decreased (with ISTATE = 3 on input),
 the remaining components of Y should be left undisturbed,
 if these are to be accessed in F and/or JAC.

 Normally, NEQ is a scalar, and it is generally referred
 to as a scalar in this user interface description.
 However, NEQ may be an array, with NEQ(1) set to the
 system size. (The DLSODE package accesses only NEQ(1).)
 In either case, this parameter is passed as the NEQ
 argument in all calls to F and JAC. Hence, if it is an
 array, locations NEQ(2),... may be used to store other
 integer data and pass it to F and/or JAC. Subroutines
 F and/or JAC must include NEQ in a DIMENSION statement
 in that case.

 Y A real array for the vector of dependent variables, of
 length NEQ or more. Used for both input and output on
 the first call (ISTATE = 1), and only for output on
 other calls. On the first call, Y must contain the
 vector of initial values. On output, Y contains the
 computed solution vector, evaluated at T. If desired,
 the Y array may be used for other purposes between
 calls to the solver.

 This array is passed as the Y argument in all calls to F
 and JAC. Hence its length may exceed NEQ, and locations
 Y(NEQ+1),... may be used to store other real data and
 pass it to F and/or JAC. (The DLSODE package accesses
 only Y(1),...,Y(NEQ).)

 T The independent variable. On input, T is used only on
 the first call, as the initial point of the integration.
 On output, after each call, T is the value at which a
 computed solution Y is evaluated (usually the same as
 TOUT). On an error return, T is the farthest point
 reached.

 TOUT The next value of T at which a computed solution is
 desired. Used only for input.

 When starting the problem (ISTATE = 1), TOUT may be equal
 to T for one call, then should not equal T for the next
 call. For the initial T, an input value of TOUT .NE. T
 is used in order to determine the direction of the
 integration (i.e., the algebraic sign of the step sizes)
 and the rough scale of the problem. Integration in
 either direction (forward or backward in T) is permitted.

PMATH Reference Manual - 43

 If ITASK = 2 or 5 (one-step modes), TOUT is ignored
 after the first call (i.e., the first call with
 TOUT .NE. T). Otherwise, TOUT is required on every call.

 If ITASK = 1, 3, or 4, the values of TOUT need not be
 monotone, but a value of TOUT which backs up is limited
 to the current internal T interval, whose endpoints are
 TCUR - HU and TCUR. (See "Optional Outputs" below for
 TCUR and HU.)

 ITOL An indicator for the type of error control. See
 description below under ATOL. Used only for input.

 RTOL A relative error tolerance parameter, either a scalar or
 an array of length NEQ. See description below under
 ATOL. Input only.

 ATOL An absolute error tolerance parameter, either a scalar or
 an array of length NEQ. Input only.

 The input parameters ITOL, RTOL, and ATOL determine the
 error control performed by the solver. The solver will
 control the vector e = (e(i)) of estimated local errors
 in Y, according to an inequality of the form

 rms-norm of (e(i)/EWT(i)) <= 1,

 where

 EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i),

 and the rms-norm (root-mean-square norm) here is

 rms-norm(v) = SQRT(sum v(i)**2 / NEQ).

 Here EWT = (EWT(i)) is a vector of weights which must
 always be positive, and the values of RTOL and ATOL
 should all be nonnegative. The following table gives the
 types (scalar/array) of RTOL and ATOL, and the
 corresponding form of EWT(i).

 ITOL RTOL ATOL EWT(i)
 ---- ------ ------ -----------------------------
 1 scalar scalar RTOL*ABS(Y(i)) + ATOL
 2 scalar array RTOL*ABS(Y(i)) + ATOL(i)
 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL
 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i)

 When either of these parameters is a scalar, it need not
 be dimensioned in the user's calling program.

 If none of the above choices (with ITOL, RTOL, and ATOL
 fixed throughout the problem) is suitable, more general
 error controls can be obtained by substituting
 user-supplied routines for the setting of EWT and/or for
 the norm calculation. See Part 4 below.

 If global errors are to be estimated by making a repeated
PMATH Reference Manual - 44

 run on the same problem with smaller tolerances, then all
 components of RTOL and ATOL (i.e., of EWT) should be
 scaled down uniformly.

 ITASK An index specifying the task to be performed. Input
 only. ITASK has the following values and meanings:
 1 Normal computation of output values of y(t) at
 t = TOUT (by overshooting and interpolating).
 2 Take one step only and return.
 3 Stop at the first internal mesh point at or beyond
 t = TOUT and return.
 4 Normal computation of output values of y(t) at
 t = TOUT but without overshooting t = TCRIT. TCRIT
 must be input as RWORK(1). TCRIT may be equal to or
 beyond TOUT, but not behind it in the direction of
 integration. This option is useful if the problem
 has a singularity at or beyond t = TCRIT.
 5 Take one step, without passing TCRIT, and return.
 TCRIT must be input as RWORK(1).

 Note: If ITASK = 4 or 5 and the solver reaches TCRIT
 (within roundoff), it will return T = TCRIT (exactly) to
 indicate this (unless ITASK = 4 and TOUT comes before
 TCRIT, in which case answers at T = TOUT are returned
 first).

 ISTATE An index used for input and output to specify the state
 of the calculation.

 On input, the values of ISTATE are as follows:
 1 This is the first call for the problem
 (initializations will be done). See "Note" below.
 2 This is not the first call, and the calculation is to
 continue normally, with no change in any input
 parameters except possibly TOUT and ITASK. (If ITOL,
 RTOL, and/or ATOL are changed between calls with
 ISTATE = 2, the new values will be used but not
 tested for legality.)
 3 This is not the first call, and the calculation is to
 continue normally, but with a change in input
 parameters other than TOUT and ITASK. Changes are
 allowed in NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF,
 ML, MU, and any of the optional inputs except H0.
 (See IWORK description for ML and MU.)

 Note: A preliminary call with TOUT = T is not counted as
 a first call here, as no initialization or checking of
 input is done. (Such a call is sometimes useful for the
 purpose of outputting the initial conditions.) Thus the
 first call for which TOUT .NE. T requires ISTATE = 1 on
 input.

 On output, ISTATE has the following values and meanings:
 1 Nothing was done, as TOUT was equal to T with
 ISTATE = 1 on input.
 2 The integration was performed successfully.
 -1 An excessive amount of work (more than MXSTEP steps)
 was done on this call, before completing the
 requested task, but the integration was otherwise
 successful as far as T. (MXSTEP is an optional input

PMATH Reference Manual - 45

 and is normally 500.) To continue, the user may
 simply reset ISTATE to a value >1 and call again (the
 excess work step counter will be reset to 0). In
 addition, the user may increase MXSTEP to avoid this
 error return; see "Optional Inputs" below.
 -2 Too much accuracy was requested for the precision of
 the machine being used. This was detected before
 completing the requested task, but the integration
 was successful as far as T. To continue, the
 tolerance parameters must be reset, and ISTATE must
 be set to 3. The optional output TOLSF may be used
 for this purpose. (Note: If this condition is
 detected before taking any steps, then an illegal
 input return (ISTATE = -3) occurs instead.)
 -3 Illegal input was detected, before taking any
 integration steps. See written message for details.
 (Note: If the solver detects an infinite loop of
 calls to the solver with illegal input, it will cause
 the run to stop.)
 -4 There were repeated error-test failures on one
 attempted step, before completing the requested task,
 but the integration was successful as far as T. The
 problem may have a singularity, or the input may be
 inappropriate.
 -5 There were repeated convergence-test failures on one
 attempted step, before completing the requested task,
 but the integration was successful as far as T. This
 may be caused by an inaccurate Jacobian matrix, if
 one is being used.
 -6 EWT(i) became zero for some i during the integration.
 Pure relative error control (ATOL(i)=0.0) was
 requested on a variable which has now vanished. The
 integration was successful as far as T.

 Note: Since the normal output value of ISTATE is 2, it
 does not need to be reset for normal continuation. Also,
 since a negative input value of ISTATE will be regarded
 as illegal, a negative output value requires the user to
 change it, and possibly other inputs, before calling the
 solver again.

 IOPT An integer flag to specify whether any optional inputs
 are being used on this call. Input only. The optional
 inputs are listed under a separate heading below.
 0 No optional inputs are being used. Default values
 will be used in all cases.
 1 One or more optional inputs are being used.

 RWORK A real working array (double precision). The length of
 RWORK must be at least

 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM

 where
 NYH = the initial value of NEQ,
 MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a
 smaller value is given as an optional input),
 LWM = 0 if MITER = 0,
 LWM = NEQ**2 + 2 if MITER = 1 or 2,
 LWM = NEQ + 2 if MITER = 3, and

PMATH Reference Manual - 46

 LWM = (2*ML + MU + 1)*NEQ + 2
 if MITER = 4 or 5.
 (See the MF description below for METH and MITER.)

 Thus if MAXORD has its default value and NEQ is constant,
 this length is:
 20 + 16*NEQ for MF = 10,
 22 + 16*NEQ + NEQ**2 for MF = 11 or 12,
 22 + 17*NEQ for MF = 13,
 22 + 17*NEQ + (2*ML + MU)*NEQ for MF = 14 or 15,
 20 + 9*NEQ for MF = 20,
 22 + 9*NEQ + NEQ**2 for MF = 21 or 22,
 22 + 10*NEQ for MF = 23,
 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25.

 The first 20 words of RWORK are reserved for conditional
 and optional inputs and optional outputs.

 The following word in RWORK is a conditional input:
 RWORK(1) = TCRIT, the critical value of t which the
 solver is not to overshoot. Required if ITASK
 is 4 or 5, and ignored otherwise. See ITASK.

 LRW The length of the array RWORK, as declared by the user.
 (This will be checked by the solver.)

 IWORK An integer work array. Its length must be at least
 20 if MITER = 0 or 3 (MF = 10, 13, 20, 23), or
 20 + NEQ otherwise (MF = 11, 12, 14, 15, 21, 22, 24, 25).
 (See the MF description below for MITER.) The first few
 words of IWORK are used for conditional and optional
 inputs and optional outputs.

 The following two words in IWORK are conditional inputs:
 IWORK(1) = ML These are the lower and upper half-
 IWORK(2) = MU bandwidths, respectively, of the banded
 Jacobian, excluding the main diagonal.
 The band is defined by the matrix locations
 (i,j) with i - ML <= j <= i + MU. ML and MU
 must satisfy 0 <= ML,MU <= NEQ - 1. These are
 required if MITER is 4 or 5, and ignored
 otherwise. ML and MU may in fact be the band
 parameters for a matrix to which df/dy is only
 approximately equal.

 LIW The length of the array IWORK, as declared by the user.
 (This will be checked by the solver.)

 Note: The work arrays must not be altered between calls to DLSODE
 for the same problem, except possibly for the conditional and
 optional inputs, and except for the last 3*NEQ words of RWORK.
 The latter space is used for internal scratch space, and so is
 available for use by the user outside DLSODE between calls, if
 desired (but not for use by F or JAC).

 JAC The name of the user-supplied routine (MITER = 1 or 4) to
 compute the Jacobian matrix, df/dy, as a function of the
 scalar t and the vector y. (See the MF description below
 for MITER.) It is to have the form

PMATH Reference Manual - 47

 SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
 DOUBLE PRECISION Y(NEQ), PD(NROWPD,NEQ)

 where NEQ, T, Y, ML, MU, and NROWPD are input and the
 array PD is to be loaded with partial derivatives
 (elements of the Jacobian matrix) on output. PD must be
 given a first dimension of NROWPD. T and Y have the same
 meaning as in subroutine F.

 In the full matrix case (MITER = 1), ML and MU are
 ignored, and the Jacobian is to be loaded into PD in
 columnwise manner, with df(i)/dy(j) loaded into PD(i,j).

 In the band matrix case (MITER = 4), the elements within
 the band are to be loaded into PD in columnwise manner,
 with diagonal lines of df/dy loaded into the rows of PD.
 Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j). ML
 and MU are the half-bandwidth parameters (see IWORK).
 The locations in PD in the two triangular areas which
 correspond to nonexistent matrix elements can be ignored
 or loaded arbitrarily, as they are overwritten by DLSODE.

 JAC need not provide df/dy exactly. A crude approximation
 (possibly with a smaller bandwidth) will do.

 In either case, PD is preset to zero by the solver, so
 that only the nonzero elements need be loaded by JAC.
 Each call to JAC is preceded by a call to F with the same
 arguments NEQ, T, and Y. Thus to gain some efficiency,
 intermediate quantities shared by both calculations may
 be saved in a user COMMON block by F and not recomputed
 by JAC, if desired. Also, JAC may alter the Y array, if
 desired. JAC must be declared EXTERNAL in the calling
 program.

 Subroutine JAC may access user-defined quantities in
 NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array
 (dimensioned in JAC) and/or Y has length exceeding
 NEQ(1). See the descriptions of NEQ and Y above.

 MF The method flag. Used only for input. The legal values
 of MF are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24,
 and 25. MF has decimal digits METH and MITER:
 MF = 10*METH + MITER .

 METH indicates the basic linear multistep method:
 1 Implicit Adams method.
 2 Method based on backward differentiation formulas
 (BDF's).

 MITER indicates the corrector iteration method:
 0 Functional iteration (no Jacobian matrix is
 involved).
 1 Chord iteration with a user-supplied full (NEQ by
 NEQ) Jacobian.
 2 Chord iteration with an internally generated
 (difference quotient) full Jacobian (using NEQ
 extra calls to F per df/dy value).
 3 Chord iteration with an internally generated
 diagonal Jacobian approximation (using one extra call

PMATH Reference Manual - 48

 to F per df/dy evaluation).
 4 Chord iteration with a user-supplied banded Jacobian.
 5 Chord iteration with an internally generated banded
 Jacobian (using ML + MU + 1 extra calls to F per
 df/dy evaluation).

 If MITER = 1 or 4, the user must supply a subroutine JAC
 (the name is arbitrary) as described above under JAC.
 For other values of MITER, a dummy argument can be used.

 Optional Inputs

 The following is a list of the optional inputs provided for in the
 call sequence. (See also Part 2.) For each such input variable,
 this table lists its name as used in this documentation, its
 location in the call sequence, its meaning, and the default value.
 The use of any of these inputs requires IOPT = 1, and in that case
 all of these inputs are examined. A value of zero for any of
 these optional inputs will cause the default value to be used.
 Thus to use a subset of the optional inputs, simply preload
 locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively,
 and then set those of interest to nonzero values.

 Name Location Meaning and default value
 ------ --------- ---
 H0 RWORK(5) Step size to be attempted on the first step.
 The default value is determined by the solver.
 HMAX RWORK(6) Maximum absolute step size allowed. The
 default value is infinite.
 HMIN RWORK(7) Minimum absolute step size allowed. The
 default value is 0. (This lower bound is not
 enforced on the final step before reaching
 TCRIT when ITASK = 4 or 5.)
 MAXORD IWORK(5) Maximum order to be allowed. The default value
 is 12 if METH = 1, and 5 if METH = 2. (See the
 MF description above for METH.) If MAXORD
 exceeds the default value, it will be reduced
 to the default value. If MAXORD is changed
 during the problem, it may cause the current
 order to be reduced.
 MXSTEP IWORK(6) Maximum number of (internally defined) steps
 allowed during one call to the solver. The
 default value is 500.
 MXHNIL IWORK(7) Maximum number of messages printed (per
 problem) warning that T + H = T on a step
 (H = step size). This must be positive to
 result in a nondefault value. The default
 value is 10.

 Optional Outputs

 As optional additional output from DLSODE, the variables listed
 below are quantities related to the performance of DLSODE which
 are available to the user. These are communicated by way of the
 work arrays, but also have internal mnemonic names as shown.
 Except where stated otherwise, all of these outputs are defined on
 any successful return from DLSODE, and on any return with ISTATE =
 -1, -2, -4, -5, or -6. On an illegal input return (ISTATE = -3),
 they will be unchanged from their existing values (if any), except
 possibly for TOLSF, LENRW, and LENIW. On any error return,

PMATH Reference Manual - 49

 outputs relevant to the error will be defined, as noted below.

 Name Location Meaning
 ----- --------- --
 HU RWORK(11) Step size in t last used (successfully).
 HCUR RWORK(12) Step size to be attempted on the next step.
 TCUR RWORK(13) Current value of the independent variable which
 the solver has actually reached, i.e., the
 current internal mesh point in t. On output,
 TCUR will always be at least as far as the
 argument T, but may be farther (if interpolation
 was done).
 TOLSF RWORK(14) Tolerance scale factor, greater than 1.0,
 computed when a request for too much accuracy
 was detected (ISTATE = -3 if detected at the
 start of the problem, ISTATE = -2 otherwise).
 If ITOL is left unaltered but RTOL and ATOL are
 uniformly scaled up by a factor of TOLSF for the
 next call, then the solver is deemed likely to
 succeed. (The user may also ignore TOLSF and
 alter the tolerance parameters in any other way
 appropriate.)
 NST IWORK(11) Number of steps taken for the problem so far.
 NFE IWORK(12) Number of F evaluations for the problem so far.
 NJE IWORK(13) Number of Jacobian evaluations (and of matrix LU
 decompositions) for the problem so far.
 NQU IWORK(14) Method order last used (successfully).
 NQCUR IWORK(15) Order to be attempted on the next step.
 IMXER IWORK(16) Index of the component of largest magnitude in
 the weighted local error vector (e(i)/EWT(i)),
 on an error return with ISTATE = -4 or -5.
 LENRW IWORK(17) Length of RWORK actually required. This is
 defined on normal returns and on an illegal
 input return for insufficient storage.
 LENIW IWORK(18) Length of IWORK actually required. This is
 defined on normal returns and on an illegal
 input return for insufficient storage.

 The following two arrays are segments of the RWORK array which may
 also be of interest to the user as optional outputs. For each
 array, the table below gives its internal name, its base address
 in RWORK, and its description.

 Name Base address Description
 ---- ------------ --
 YH 21 The Nordsieck history array, of size NYH by
 (NQCUR + 1), where NYH is the initial value of
 NEQ. For j = 0,1,...,NQCUR, column j + 1 of
 YH contains HCUR**j/factorial(j) times the jth
 derivative of the interpolating polynomial
 currently representing the solution, evaluated
 at t = TCUR.
 ACOR LENRW-NEQ+1 Array of size NEQ used for the accumulated
 corrections on each step, scaled on output to
 represent the estimated local error in Y on
 the last step. This is the vector e in the
 description of the error control. It is
 defined only on successful return from DLSODE.

PMATH Reference Manual - 50

 Part 2. Other Callable Routines

 The following are optional calls which the user may make to gain
 additional capabilities in conjunction with DLSODE.

 Form of call Function
 ------------------------ --
 CALL XSETUN(LUN) Set the logical unit number, LUN, for
 output of messages from DLSODE, if the
 default is not desired. The default
 value of LUN is 6. This call may be made
 at any time and will take effect
 immediately.
 CALL XSETF(MFLAG) Set a flag to control the printing of
 messages by DLSODE. MFLAG = 0 means do
 not print. (Danger: this risks losing
 valuable information.) MFLAG = 1 means
 print (the default). This call may be
 made at any time and will take effect
 immediately.
 CALL DSRCOM(RSAV,ISAV,JOB) Saves and restores the contents of the
 internal COMMON blocks used by DLSODE
 (see Part 3 below). RSAV must be a
 real array of length 218 or more, and
 ISAV must be an integer array of length
 37 or more. JOB = 1 means save COMMON
 into RSAV/ISAV. JOB = 2 means restore
 COMMON from same. DSRCOM is useful if
 one is interrupting a run and restarting
 later, or alternating between two or
 more problems solved with DLSODE.
 CALL DINTDY(,,,,,) Provide derivatives of y, of various
 (see below) orders, at a specified point t, if
 desired. It may be called only after a
 successful return from DLSODE. Detailed
 instructions follow.

 Detailed instructions for using DINTDY

 The form of the CALL is:

 CALL DINTDY (T, K, RWORK(21), NYH, DKY, IFLAG)

 The input parameters are:

 T Value of independent variable where answers are
 desired (normally the same as the T last returned by
 DLSODE). For valid results, T must lie between
 TCUR - HU and TCUR. (See "Optional Outputs" above
 for TCUR and HU.)
 K Integer order of the derivative desired. K must
 satisfy 0 <= K <= NQCUR, where NQCUR is the current
 order (see "Optional Outputs"). The capability
 corresponding to K = 0, i.e., computing y(t), is
 already provided by DLSODE directly. Since
 NQCUR >= 1, the first derivative dy/dt is always
 available with DINTDY.
 RWORK(21) The base address of the history array YH.
 NYH Column length of YH, equal to the initial value of NEQ.

PMATH Reference Manual - 51

 The output parameters are:

 DKY Real array of length NEQ containing the computed value
 of the Kth derivative of y(t).
 IFLAG Integer flag, returned as 0 if K and T were legal,
 -1 if K was illegal, and -2 if T was illegal.
 On an error return, a message is also written.

 Part 3. Common Blocks

 If DLSODE is to be used in an overlay situation, the user must
 declare, in the primary overlay, the variables in:
 (1) the call sequence to DLSODE,
 (2) the internal COMMON block /DLS001/, of length 255
 (218 double precision words followed by 37 integer words).

 If DLSODE is used on a system in which the contents of internal
 COMMON blocks are not preserved between calls, the user should
 declare the above COMMON block in his main program to insure that
 its contents are preserved.

 If the solution of a given problem by DLSODE is to be interrupted
 and then later continued, as when restarting an interrupted run or
 alternating between two or more problems, the user should save,
 following the return from the last DLSODE call prior to the
 interruption, the contents of the call sequence variables and the
 internal COMMON block, and later restore these values before the
 next DLSODE call for that problem. In addition, if XSETUN and/or
 XSETF was called for non-default handling of error messages, then
 these calls must be repeated. To save and restore the COMMON
 block, use subroutine DSRCOM (see Part 2 above).

 Part 4. Optionally Replaceable Solver Routines

 Below are descriptions of two routines in the DLSODE package which
 relate to the measurement of errors. Either routine can be
 replaced by a user-supplied version, if desired. However, since
 such a replacement may have a major impact on performance, it
 should be done only when absolutely necessary, and only with great
 caution. (Note: The means by which the package version of a
 routine is superseded by the user's version may be system-
 dependent.)

 DEWSET

 The following subroutine is called just before each internal
 integration step, and sets the array of error weights, EWT, as
 described under ITOL/RTOL/ATOL above:

 SUBROUTINE DEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT)

 where NEQ, ITOL, RTOL, and ATOL are as in the DLSODE call
 sequence, YCUR contains the current dependent variable vector,
 and EWT is the array of weights set by DEWSET.

PMATH Reference Manual - 52

 If the user supplies this subroutine, it must return in EWT(i)
 (i = 1,...,NEQ) a positive quantity suitable for comparing errors
 in Y(i) to. The EWT array returned by DEWSET is passed to the
 DVNORM routine (see below), and also used by DLSODE in the
 computation of the optional output IMXER, the diagonal Jacobian
 approximation, and the increments for difference quotient
 Jacobians.

 In the user-supplied version of DEWSET, it may be desirable to use
 the current values of derivatives of y. Derivatives up to order NQ
 are available from the history array YH, described above under
 optional outputs. In DEWSET, YH is identical to the YCUR array,
 extended to NQ + 1 columns with a column length of NYH and scale
 factors of H**j/factorial(j). On the first call for the problem,
 given by NST = 0, NQ is 1 and H is temporarily set to 1.0. The
 quantities NQ, NYH, H, and NST can be obtained by including in
 DEWSET the statements:

 DOUBLE PRECISION RLS
 COMMON /DLS001/ RLS(218),ILS(37)
 NQ = ILS(33)
 NYH = ILS(12)
 NST = ILS(34)
 H = RLS(212)

 Thus, for example, the current value of dy/dt can be obtained as
 YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is unnecessary
 when NST = 0).

 DVNORM

 DVNORM is a real function routine which computes the weighted
 root-mean-square norm of a vector v:

 d = DVNORM (n, v, w)

 where:
 n = the length of the vector,
 v = real array of length n containing the vector,
 w = real array of length n containing weights,
 d = SQRT((1/n) * sum(v(i)*w(i))**2).

 DVNORM is called with n = NEQ and with w(i) = 1.0/EWT(i), where
 EWT is as set by subroutine DEWSET.

 If the user supplies this function, it should return a nonnegative
 value of DVNORM suitable for use in the error control in DLSODE.
 None of the arguments should be altered by DVNORM. For example, a
 user-supplied DVNORM routine might:
 - Substitute a max-norm of (v(i)*w(i)) for the rms-norm, or
 - Ignore some components of v in the norm, with the effect of
 suppressing the error control on those components of Y.

 ***REFERENCES Alan C. Hindmarsh, "ODEPACK, a systematized collection
 of ODE solvers", in Scientific Computing, R. S.
 Stepleman, et al. (Eds.), (North-Holland, Amsterdam,
 1983), pp. 55-64.
 ***ROUTINES CALLED DEWSET, DINTDY, DUMACH, DSTODE, DVNORM, XERRWD
 ***COMMON BLOCKS DLS001
 ***REVISION HISTORY (YYMMDD)

PMATH Reference Manual - 53

 791129 DATE WRITTEN
 ***END PROLOGUE DLSODE

PMATH Reference Manual - 54

DMAXAF

 DOUBLE PRECISION FUNCTION DMAXAF (ARRAY, IFIRST, ILAST, ISTRID,
 + IMAX)
 ***BEGIN PROLOGUE DMAXAF
 ***PURPOSE Maximum value in a one-dimensional array.
 ***LIBRARY PMATH
 ***CATEGORY N5A
 ***TYPE DOUBLE PRECISION (SMAXAF-S, DMAXAF-D, AMAXF8-8, IMAXAF-I)
 ***KEYWORDS MAXIMUM
 ***AUTHOR Painter, Jeffrey F., (LLNL)
 Revised by:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine AMAXAF.)
 *Usage:
 INTEGER IFIRST, ILAST, ISTRID, IMAX
 DOUBLE PRECISION ARRAY(n), AMAX, DMAXAF
 AMAX = DMAXAF (ARRAY, IFIRST, ILAST, ISTRID, IMAX)

 *Arguments:
 ARRAY:IN Real array to be searched.
 n, the dimension of the array, must be no less than
 ILAST.

 IFIRST:IN First subscript in the array to be searched.

 ILAST :IN Last subscript in the array to be searched.

 ISTRID:IN Increment (stride) between successive locations that
 are to be searched.

 IMAX :OUT Index of the maximum value in the array, i.e., the
 ordinal position of the value in the array.

 *Function Return Values:
 AMAX : Maximum value in the array.

 *Description:
 DMAXAF finds the maximum value in a one-dimensional real array,
 and returns its index. In case of multiple maxima, the last
 index found is returned.

 *Cautions:
 The array is assumed to be subscripted from 1.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830401 DATE WRITTEN (J. F. Painter)
 930930 Converted old UNICOS names to S- or I-names. (DBP)
 931005 Augmented list of equivalent routines. (FNF)
 931018 Produced double precision version. (DBP)
 940421 Corrected category. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE DMAXAF

PMATH Reference Manual - 55

DMEANF

 DOUBLE PRECISION FUNCTION DMEANF (A, N)
 ***BEGIN PROLOGUE DMEANF
 ***PURPOSE Mean of a one-dimensional real array.
 ***LIBRARY PMATH
 ***CATEGORY L1A
 ***TYPE DOUBLE PRECISION (SMEANF-S, DMEANF-D, AMEAN8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, MEAN
 ***AUTHOR Unknown, Name (LLNL/USD/NMG)
 Durst, Mark J. (LLNL/CMRD/SPG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine AMEANF.)
 *Usage:
 INTEGER N
 DOUBLE PRECISION ANS, A(N)
 ANS = DMEANF (A, N)

 *Arguments:
 A :IN Array of input values.
 N :IN Number of elements in A.

 *Function Return Values:
 ANS The mean of the values in A.

 *Description:
 DMEANF calculates the mean of the N values contained in A.

 *See Also:
 For a vector of means, see DMEANV.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 (The above is the date of LCSD-442,Rev.1 and is undoubtedly
 a significant underestimate of the age of this routine.)
 890223 Added SLATEC/LDOC prologue. (FNF)
 890518 Modified sequence numbers to fit in columns 73-80. (FNF)
 920319 Updated with prologue edited 891025 by G. Shaw for manual.
 930930 Converted old UNICOS names to S- or I-names. (DBP)
 931004 Corrected name conversion errors. (FNF)
 931005 Corrected list of equivalent routines and made sure that all
 variables are declared. (FNF)
 931018 Produced double precision version. (DBP)
 931026 Minor change to reduce single/double differences. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE DMEANF

PMATH Reference Manual - 56

DMEANV

 SUBROUTINE DMEANV (A, N, M, AV)
 ***BEGIN PROLOGUE DMEANV
 ***PURPOSE Mean vector of a two-dimensional real array.
 Calculates the means of N observations on each of M
 variables.
 ***LIBRARY PMATH
 ***CATEGORY L1B
 ***TYPE DOUBLE PRECISION (SMEANV-S, DMEANV-D, MEANV8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, MEAN, VECTOR
 ***AUTHOR Unknown, Name (LLNL/USD/NMG)
 Durst, Mark J. (LLNL/CMRD/SPG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine AMEANV.)
 *Usage:
 INTEGER N, M
 DOUBLE PRECISION A(N,M), AV(M)
 CALL DMEANV (A, N, M, AV)

 *Arguments:
 A :IN N by M array of N observations on M variables.
 N :IN Row dimension of A.
 M :IN Column dimension of A.
 AV:OUT Array containing the values of the means, i.e.,

 N
 AV(j) = sum A(i,j) / N , j = 1,...,M.
 i=1

 *Description:
 DMEANV calculates the means of the N observations on each of M
 variables contained in the columns of A.

 The result AV is mathematically equivalent to applying DMEANF to
 each of the columns of A, but DMEANV should be faster.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 (The above is the date of LCSD-442,Rev.1 and is undoubtedly
 a significant underestimate of the age of this routine.)
 890223 Added SLATEC/LDOC prologue. (FNF)
 890518 Modified sequence numbers to fit in columns 73-80. (FNF)
 920319 Updated with prologue edited 891025 by G. Shaw for manual.
 ***END PROLOGUE DMEANV

PMATH Reference Manual - 57

DMEDF

 DOUBLE PRECISION FUNCTION DMEDF (A, N, WK)
 ***BEGIN PROLOGUE DMEDF
 ***PURPOSE Median of a one-dimensional real array.
 ***LIBRARY PMATH
 ***CATEGORY L1A
 ***TYPE DOUBLE PRECISION (SMEDF-S, DMEDF-D, AMED8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, MEDIAN
 ***AUTHOR Unknown, Name (LLNL/USD/NMG)
 Durst, Mark J. (LLNL/CMRD/SPG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine AMEDF.)
 *Usage:
 INTEGER N
 DOUBLE PRECISION ANS, A(N), WK(N)
 ANS = DMEDF (A, N, WK)

 *Arguments:
 A :IN Array of input values.
 N :IN Number of elements in A.
 WK:WORK Work array of size N.

 *Function Return Values:
 ANS : the median of the values in A.

 *Description:
 DMEDF calculates the median of the N values contained in A. If N
 is odd, the median is the (N + 1)/2 ordered value. For N even,
 the value is the average of the N/2 and N/2 + 1 ordered values.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 (The above is the date of LCSD-442,Rev.1 and is undoubtedly
 a significant underestimate of the age of this routine.)
 890223 Added SLATEC/LDOC prologue. (FNF)
 890518 Modified sequence numbers to fit in columns 73-80. (FNF)
 920319 Updated with prologue edited 891025 by G. Shaw for manual.
 930930 Converted old UNICOS names to S- or I-names. (DBP)
 931004 Corrected name conversion errors. (FNF)
 931005 Corrected list of equivalent routines, made sure that all
 variables are declared, and improved comments. (FNF)
 *** END PROLOGUE DMEDF

PMATH Reference Manual - 58

DMINAF

 DOUBLE PRECISION FUNCTION DMINAF (ARRAY, IFIRST, ILAST, ISTRID,
 + IMIN)
 ***BEGIN PROLOGUE DMINAF
 ***PURPOSE Minimum value in a one-dimensional array.
 ***LIBRARY PMATH
 ***CATEGORY N5A
 ***TYPE DOUBLE PRECISION (SMINAF-S, DMINAF-D, AMINF8-8, IMINAF-I)
 ***KEYWORDS MINIMUM
 ***AUTHOR Painter, Jeffrey F., (LLNL)
 Revised by:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine AMINAF.)
 *Usage:
 INTEGER IFIRST, ILAST, ISTRID, IMIN
 DOUBLE PRECISION ARRAY(n), AMIN, DMINAF
 AMIN = DMINAF (ARRAY, IFIRST, ILAST, ISTRID, IMIN)

 *Arguments:
 ARRAY:IN Real array to be searched.
 n, the dimension of the array, must be no less than
 ILAST.

 IFIRST:IN First subscript in the array to be searched.

 ILAST :IN Last subscript in the array to be searched.

 ISTRID:IN Increment (stride) between successive locations that
 are to be searched.

 IMIN :OUT Index of the minimum value in the array, i.e., the
 ordinal position of the value in the array.

 *Function Return Values:
 AMIN : Minimum value in the array.

 *Description:
 DMINAF finds the minimum value in a one-dimensional real array,
 and returns its index. In case of multiple minima, the last
 index found is returned.

 *Cautions:
 The array is assumed to be subscripted from 1.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830401 DATE WRITTEN (J. F. Painter)
 890502 Added prologue (T. Suyehiro)
 891025 Edited prologue for publication. (G. Shaw)
 *** END PROLOGUE DMINF

PMATH Reference Manual - 59

DMINMX

 SUBROUTINE DMINMX (ARRAY, IFIRST, ILAST, ISTRID, AMIN, AMAX,
 + IMIN, IMAX)
 ***BEGIN PROLOGUE DMINMX
 ***PURPOSE Minimum and maximum values in a one-dimensional array.
 ***LIBRARY PMATH
 ***CATEGORY N5A
 ***TYPE DOUBLE PRECISION (SMINMX-S, DMINMX-D, AMNMX8-8, IMINMX-I)
 ***KEYWORDS MINIMUM, MAXIMUM
 ***AUTHOR Painter, Jeffrey F., (LLNL)
 Revised by:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine AMINMX.)
 *Usage:
 INTEGER IFIRST, ILAST, ISTRID, IMIN, IMAX
 DOUBLE PRECISION ARRAY(n), AMIN, AMAX
 CALL DMINMX (ARRAY, IFIRST, ILAST, ISTRID, AMIN, AMAX,
 * IMIN, IMAX)

 *Arguments:
 ARRAY:IN Real array to be searched.
 n, the dimension of the array, must be no less than
 ILAST.

 IFIRST:IN First subscript in the array to be searched.

 ILAST :IN Last subscript in the array to be searched.

 ISTRID:IN Increment (stride) between successive locations that
 are to be searched (>= 1).

 AMIN :OUT Minimum value in the array.

 AMAX :OUT Maximum value in the array.

 IMIN :OUT Index of the minimum value in the array, i.e., the
 ordinal position of the value in the array.

 IMAX :OUT Index of the maximum value in the array, i.e., the
 ordinal position of the value in the array.

 *Description:
 DMINMX finds the minimum and maximum values in a one-dimensional
 real array, and returns their indices. In case of multiple
 extrema, the last index found is returned.

 ISTRID should be greater than or equal to 1. If ISTRID is less
 than 1, it is assumed to be 1.

 *Cautions:
 The array is assumed to be subscripted from 1.
 ***END PROLOGUE DMINMX

PMATH Reference Manual - 60

DRANF

 DOUBLE PRECISION FUNCTION DRANF()
 ***BEGIN PROLOGUE DRANF
 ***PURPOSE Uniform random-number generator.
 The pseudorandom numbers generated by SRANF/DRANF/RANF8
 are uniformly distributed in the open interval (0,1).
 ***LIBRARY PMATH
 ***CATEGORY L6A21
 ***TYPE DOUBLE PRECISION (SRANF-S, DRANF-D, RANF8-8)
 ***KEYWORDS RANDOM NUMBER GENERATION, UNIFORM DISTRIBUTION
 ***AUTHOR Fritsch, Fred N., (LLNL/LC/MSS)
 Original CAL version:
 Margolies, David, (LLNL/USD/MSS)
 Durst, Mark J. (LLNL/CMRD/SPG)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RANF.)
 *Usage:
 DOUBLE PRECISION R, DRANF
 R = DRANF()

 *Function Return Values:
 R Random number between 0 and 1.

 *Description:
 DRANF generates pseudorandom numbers lying strictly between 0
 and 1. Each call to DRANF produces a different value, until the
 sequence cycles after 2**46 calls.

 DRANF is a linear congruential pseudorandom-number generator.
 The default starting seed is
 SEED = 4510112377116321(oct) = 948253fc9cd1(hex).
 The multiplier is 1207264271730565(oct) = 2875a2e7b175(hex).

 *See Also:
 For exponentially distributed random numbers, use DRLGF instead of
 DRANF.
 The starting seed for DRANF may be set via RNSSET.
 The current DRANF seed may be obtained from RNSGET.
 The DRANF multiplier may be set via RNMSET (changing the
 multiplier is not recommended).
 The number of calls to DRANF may be obtained from RNFCNT.

 ***ROUTINES CALLED RANF8
 ***REVISION HISTORY (YYMMDD)
 800325 DATE WRITTEN
 (Date from original MATHLIB CAL version.)
 890421 Added SLATEC/LDOC prologue. (FNF)
 890530 Minor additions/corrections to prologue. (FNF)
 891025 Edited prologue for publication. (G. Shaw)
 ***END PROLOGUE DRANF

PMATH Reference Manual - 61

DRANFV

 SUBROUTINE DRANFV (N, RANOUT)
 ***BEGIN PROLOGUE DRANFV
 ***PURPOSE Vector uniform random-number generator.
 Returns a vector of numbers from the SRANF/DRANF/RANF8
 sequence.
 ***LIBRARY PMATH
 ***CATEGORY L6A21
 ***TYPE DOUBLE PRECISION (SRANFV-S, DRANFV-D, RANFV8-8)
 ***KEYWORDS RANDOM NUMBER GENERATION, UNIFORM DISTRIBUTION, VECTOR
 ***AUTHOR Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RANFV.)
 *Usage:
 INTEGER N
 DOUBLE PRECISION RANOUT(n)
 CALL DRANFV (N, RANOUT)

 *Arguments:
 N :IN Number of random numbers to be generated.
 RANOUT:OUT Vector of N random numbers between 0 and 1.
 The actual dimension of RANOUT must satisfy n>=N.

 *Description:
 DRANFV generates pseudorandom numbers lying strictly between 0
 and 1. The above call is equivalent to the loop
 DO 10 I=1,N
 RANOUT(I) = DRANF()
 10 CONTINUE
 except that DRANFV may be significantly faster for suitable N.
 (The actual timing is likely to be platform-dependent.)

 *See Also:
 Refer to DRANF description for information on restarting the
 sequence and related matters.

 ***ROUTINES CALLED DRANF
 ***REVISION HISTORY (YYMMDD)
 931011 DATE WRITTEN
 931011 Created portable version that merely calls SRANF. (FNF)
 931018 Produced double precision version. (DBP)
 931025 Added equivalent routines list. (FNF)
 940421 Improved purpose. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE DRANFV

PMATH Reference Manual - 62

DRANKS

 SUBROUTINE DRANKS (A, N, AO, RA, IO, B, ISTAK)
 ***BEGIN PROLOGUE DRANKS
 ***PURPOSE Ranks of a one-dimensional real array.
 ***LIBRARY PMATH
 ***CATEGORY L1A
 ***TYPE DOUBLE PRECISION (SRANKS-S, DRANKS-D, RANKS8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, RANKS
 ***AUTHOR Unknown, Name, (LLNL/USD/NMG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RANKS.)
 *Usage:
 INTEGER N, IO(N), ISTAK(N)
 DOUBLE PRECISION A(N), AO(N), RA(N), B(N)
 CALL DRANKS (A, N, AO, RA, IO, B, ISTAK)

 *Arguments:
 A :IN Array of input values.
 N :IN Number of elements in A.
 AO :OUT Array containing the values of A ordered.
 RA :OUT Array of order N, containing the ranks.
 IO :WORK Work array of order N.
 B :WORK Work array of order N.
 ISTAK:WORK Work array of order N.

 *Description:
 DRANKS orders the N values contained in A and calculates their
 ranks. For ties, the average of the ranks is assigned.

 *Accuracy:

 *Cautions:
 This routine was formerly known as ORDERS. Its name was changed
 in March 1991 to avoid conflict with a SCILIB (OMNILIB) routine.

 *Portability:

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 (The above is the date of LCSD-442,Rev.1 and is undoubtedly
 a significant underestimate of the age of this routine.)
 890223 Added SLATEC/LDOC prologue. (FNF)
 890518 Modified sequence numbers to fit in columns 73-80. (FNF)
 890518 Changed m from a data-loaded constant to a parameter. (FNF)
 ***END PROLOGUE DRANKS

PMATH Reference Manual - 63

DREFIT

 SUBROUTINE DREFIT (YDATA, NDATA, MTERMS, WEIGHT, COEFF, RSD2,
 + WORK, JOB, IERR)
 ***BEGIN PROLOGUE DREFIT
 ***PURPOSE Repeated polynomial fitting.
 SREFIT(DREFIT) is called after a call of SFITPO(DFITPO) to
 fit a polynomial of the same or lower degree to the same
 data or to data in which y has been changed but x left the
 same.
 ***LIBRARY PMATH
 ***CATEGORY K1A1A2, L8B1B1
 ***TYPE DOUBLE PRECISION (SREFIT-S, DREFIT-D, REFIT8-8)
 ***KEYWORDS POLYNOMIAL FITTING, LEAST SQUARES
 ***AUTHOR Painter, Jeffrey F., (LLNL/CMRD)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine REFITP.)
 *Usage:
 INTEGER NDATA, MTERMS, JOB, IERR
 PARAMETER (NWORK = (NDATA+1)*(MTERMS+1))
 DOUBLE PRECISION YDATA(NDATA), WEIGHT(NDATA), COEFF(MTERMS),
 * RSD2, WORK(NWORK)

 CALL DREFIT (YDATA, NDATA, MTERMS, WEIGHT, COEFF, RSD2,
 * WORK, JOB, IERR)

 *Arguments:
 YDATA :IN Array of values (new or old) of the dependent
 variable, y, of dimension NDATA.

 NDATA :IN Number of data points. It must be the same as the
 NDATA used for DFITPO.

 MTERMS:IN Number of terms in the polynomial to be found. It
 cannot be greater than NTERMS, the number of terms
 in the polynomial that DFITPO found.
 If MTERMS > NDATA, the result will be the coefficients
 of an interpolating polynomial of degree NDATA-1, and
 COEFF(j) = 0 for j > NDATA.

 WEIGHT:IN Optional weight array. It must be the same as in
 the DFITPO call.

 COEFF :OUT Array containing the MTERMS coefficients of the
 polynomial.

 RSD2 :OUT Sum of the squares of the (weighted) residuals
 corresponding to COEFF.

 WORK :WORK Must be exactly the same array as in the previous
 call of DFITPO or DREFIT; no changes may be made by
 the calling program. As in DFITPO, WORK contains the
 residuals R(i) in its first NDATA entries if JOB is
 nonzero.

 JOB :IN Residuals-computation flag:

PMATH Reference Manual - 64

 non-0 Residuals are computed and output in WORK.
 0 Residuals are not completely computed,
 although RSD2 is computed. (This option will
 more efficient if the R(i) are not required.)

 IERR :OUT Error flag. On normal termination, IERR = 0.

 Fatal errors:
 (1) DQRSL returned INFO=IERR: 0 < IERR <= NTERMS
 A singular matrix has been detected (same meaning
 as in DFITPO). DREFIT should not be called if
 DFITPO returned IERR > 0.
 (2) MTERMS > NTERMS: IERR = -1
 COEFF has not been computed in either case.

 *Description:
 DREFIT is called, after a call of DFITPO, to fit a polynomial of
 the same or lower degree to the same data or to data in which y
 has been changed but x left the same as in the DFITPO call.

 DREFIT provides the same output as would a second call of DFITPO,
 but DREFIT is more efficient. DREFIT may be called any number of
 times, as long as the contents of WORK are not disturbed.

 *Portability:
 This routine calls the LINPACK routine DQRSL, and BLAS (Basic
 Linear Algebra Dubprograms) DCOPY, DDOT.

 *See Also:
 See DFITPO for additional information.

 ***SEE ALSO DFITPO
 ***REFERENCES (NONE)
 ***ROUTINES CALLED DCOPY, DDOT, DQRSL
 ***REVISION HISTORY (YYMMDD)
 ***END PROLOGUE DREFIT

PMATH Reference Manual - 65

DRLGF

 DOUBLE PRECISION FUNCTION DRLGF()
 ***BEGIN PROLOGUE DRLGF
 ***PURPOSE Exponential random-number generator.
 The pseudorandom numbers generated by SRLGF/DRLGF/RLGF8
 are drawn from the exponential distribution with mean 1.
 ***LIBRARY PMATH
 ***CATEGORY L6A5
 ***TYPE DOUBLE PRECISION (SRLGF-S, DRLGF-D, RLGF8-8)
 ***KEYWORDS RANDOM NUMBER GENERATION, EXPONENTIAL DISTRIBUTION
 ***AUTHOR Fritsch, Fred N., (LLNL/LC/MSS)
 Original CAL version:
 Margolies, David, (LLNL/USD/MSS)
 Durst, Mark J. (LLNL/CMRD/SPG)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RLGF.)
 *Usage:
 DOUBLE PRECISION R
 R = DRLGF()

 *Function Return Values:
 R A random number drawn from the exponential distribution
 with mean 1.

 *Description:
 DRLGF takes the natural logarithm of uniform random numbers.
 DRLGF() should be used in place of the expression -LOG(DRANF()).
 Each call to DRLGF produces a different value, until the sequence
 cycles after 2**46 calls.

 DRLGF uses a linear congruential pseudorandom-number generator
 which is identical to DRANF except that the default starting seed
 is different:
 SEED = 7315512527213717(oct) = ecda555d17cf(hex).
 The multiplier is 1207264271730565(oct) = 2875a2e7b175(hex).
 The SRLGF/DRLGF/RLGF8 sequence is independent of that generated
 by SRANF/DRANF/RANF8.

 *Cautions:
 Note that if you are using both DRANF and DRLGF, stopping and
 restarting both sequences will require calling both RNSGET/RNSSET
 and RLSGET/RLSSET.

 ***ROUTINES CALLED RLGF8
 ***REVISION HISTORY (YYMMDD)
 ***END PROLOGUE DRLGF

PMATH Reference Manual - 66

DSRCOM

 SUBROUTINE DSRCOM (RSAV, ISAV, JOB)
 ***BEGIN PROLOGUE DSRCOM
 ***PURPOSE Save/restore ODEPACK COMMON blocks.
 ***LIBRARY PMATH (ODEPACK)
 ***CATEGORY I1C
 ***TYPE DOUBLE PRECISION (SSRCOM-S, DSRCOM-D, SRCOM8-8)
 ***AUTHOR Hindmarsh, Alan C., (LLNL)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine SRCOM.)

 This routine saves or restores (depending on JOB) the contents of
 the COMMON block DLS001, which is used internally
 by one or more ODEPACK solvers.

 RSAV = real array of length 218 or more.
 ISAV = integer array of length 37 or more.
 JOB = flag indicating to save or restore the COMMON blocks:
 JOB = 1 if COMMON is to be saved (written to RSAV/ISAV)
 JOB = 2 if COMMON is to be restored (read from RSAV/ISAV)
 A call with JOB = 2 presumes a prior call with JOB = 1.

 ***SEE ALSO DLSODE
 ***ROUTINES CALLED (NONE)
 ***COMMON BLOCKS DLS001
 ***REVISION HISTORY (YYMMDD)
 791129 DATE WRITTEN
 890501 Modified prologue to SLATEC/LDOC format. (FNF)
 890503 Minor cosmetic changes. (FNF)
 921116 Deleted treatment of block /EH0001/. (ACH)
 930801 Reduced Common block length by 2. (ACH)
 930809 Renamed to allow single/double precision versions. (ACH)
 940315 Added REAL*8 name to C***TYPE line. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 941011 Changed to user-callable. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE DSRCOM

PMATH Reference Manual - 67

DSTDEV

 DOUBLE PRECISION FUNCTION DSTDEV (A, N, IND)
 ***BEGIN PROLOGUE DSTDEV
 ***PURPOSE Standard deviation of a one-dimensional real array.
 ***LIBRARY PMATH
 ***CATEGORY L1A
 ***TYPE DOUBLE PRECISION (SSTDEV-S, DSTDEV-D, STDEV8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, STANDARD DEVIATION
 ***AUTHOR Unknown, Name (LLNL/USD/NMG)
 Durst, Mark J. (LLNL/CMRD/SPG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine STDEVF.)
 *Usage:
 INTEGER N, IND
 DOUBLE PRECISION ANS, A(N)
 ANS = DSTDEV (A, N, IND)

 *Arguments:
 A :IN Array of input values.
 N :IN Number of elements in A.
 IND:IN Job-control flag:
 0 Divide the adjusted sum of squares by N - 1,
 producing the usual standard-deviation calculation.
 non-0 Divide by N.

 *Function Return Values:
 ANS The standard deviation of the values in A.

 *Description:
 DSTDEV calculates the standard deviation of the N values contained
 in A, as modified by IND.

 *See Also:
 For a vector of standard deviations, see DCOVAR.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 (The above is the date of LCSD-442,Rev.1 and is undoubtedly
 a significant underestimate of the age of this routine.)
 890131 Replaced abs with max1 in argument to sqrt. (FNF)
 890223 Added SLATEC/LDOC prologue. (FNF)
 890518 Modified sequence numbers to fit in columns 73-80. (FNF)
 920319 Updated with prologue edited 891025 by G. Shaw for manual.
 ***END PROLOGUE DSTDEV

PMATH Reference Manual - 68

DUMACH

 DOUBLE PRECISION FUNCTION DUMACH ()
 ***BEGIN PROLOGUE DUMACH
 ***PURPOSE Compute the unit roundoff of the machine.
 ***LIBRARY PMATH
 ***CATEGORY R1
 ***TYPE DOUBLE PRECISION (RUMACH-S, DUMACH-D, UMACH8-8)
 ***KEYWORDS MACHINE CONSTANTS
 ***AUTHOR Hindmarsh, Alan C., (LLNL)
 ***DESCRIPTION
 *Usage:
 DOUBLE PRECISION A, DUMACH
 A = DUMACH()

 *Function Return Values:
 A : the unit roundoff of the machine.

 *Description:
 The unit roundoff is defined as the smallest positive machine
 number u such that 1.0 + u .ne. 1.0. This is computed by DUMACH
 in a machine-independent manner.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 930216 DATE WRITTEN
 930818 Added SLATEC-format prologue. (FNF)
 931026 Minor change to reduce single/double differences. (FNF)
 940315 Added REAL*8 name to C***TYPE line. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE DUMACH

PMATH Reference Manual - 69

DZERO

 SUBROUTINE DZERO (F, B, C, ABSERR, RELERR, IFLAG)
 ***BEGIN PROLOGUE DZERO
 ***PURPOSE Find a root x of a nonlinear equation F(x) = 0.
 A search interval (b,c) must be supplied such that
 F(b)*F(c) <= 0.
 ***LIBRARY PMATH
 ***CATEGORY F1B
 ***TYPE DOUBLE PRECISION (SZERO-S, DZERO-D, ZERO8-8)
 ***KEYWORDS ZEROFINDING, NONLINEAR EQUATIONS, SECANT METHOD,
 BISECTION METHOD
 ***AUTHOR Leonard, L. J., (LLNL)
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine ZEROIN.)
 *Usage:
 INTEGER IFLAG
 DOUBLE PRECISION F, B, C, ABSERR, RELERR
 EXTERNAL F
 CALL DZERO (F, B, C, ABSERR, RELERR, IFLAG)

 *Arguments:
 F :EXT Name of a function subprogram defining a continuous
 real function of a single real variable x. The
 calling program must declare the function to be
 EXTERNAL.

 B :INOUT Input: Lower bound of the search interval (B,C).
 Output: The better approximation to a root, for B
 and C are redefined so that
 ABS(F(B)) <= ABS(F(C)).

 C :INOUT Input: Upper bound of the search interval (B,C).
 Output: The value of C is not necessarily close to
 B and should be disregarded (see B above).

 ABSERR:IN Roughly the maximum difference allowed between B
 and C. If zero is a possible root, do not use
 ABSERR = 0.

 RELERR:IN Roughly the maximum relative error allowed between
 B and C; i.e., the degree of accuracy required in
 the root.

 IFLAG:INOUT Input:
 >= 6 The maximum number of function evaluations
 allowed.
 < 6 The maximum number of evaluations is 100.

 Output:
 1 F(B) * F(C) < 0, and the stopping criterion
 ABS(B - C) <= 2.0 * (RELERR * ABS(B) + ABSERR)
 is met.
 2 B is found such that F(B) = 0. The interval
 (B,C) may or may not have satisfied the stopping
 criterion.
 3 ABS(F(B)) exceeds the absolute values of the

PMATH Reference Manual - 70

 function at the original input values of B and C;
 i.e., the values found by DZERO are "worse" than
 those supplied in the call. In this case, it is
 likely that B is near a pole of the function.
 4 No odd-order zero was found in the interval. A
 local minimum may have been obtained.
 5 The stopping criterion is not met within the
 specified number of function evaluations.

 *Description:
 DZERO finds a root x of the nonlinear equation F(x) = 0. Normal
 input consists of a continuous function F and an initial search
 interval (B,C) that brackets the desired zero of F; i.e.,
 F(B) * F(C) <= 0.

 Each iteration finds new values of B and C such that the interval
 (B,C) is shrunk, and F(B) * F(C) <= 0. The stopping criterion is

 ABS(B - C) <= 2.0 * (RELERR*ABS(B) + ABSERR)

 DZERO is a slightly modified version of the subroutine DZERO by
 Shampine and Allen (see Ref. 2). The method used is a combination
 of bisection and the secant iteration.

 *Cautions:
 F is assumed to be a continuous real-valued function. The
 algorithm in DZERO assumes that F has exactly one zero in the
 interval [B,C]. If, in fact, F has an odd number of zeros, DZERO
 will zero in on one of them, giving no indication that there may
 be more.

 *See Also:
 Another implementation of this algorithm may be found in routine
 FZERO in the SLATEC Common Mathematical Library.

 ***END PROLOGUE DZERO

PMATH Reference Manual - 71

IMAXAF

 INTEGER FUNCTION IMAXAF (IARRAY, IFIRST, ILAST, ISTRID, IMAX)
 ***BEGIN PROLOGUE IMAXAF
 ***PURPOSE Maximum value in a one-dimensional array.
 ***LIBRARY PMATH
 ***CATEGORY N5A
 ***TYPE INTEGER (SMAXAF-S, DMAXAF-D, AMAXF8-8, IMAXAF-I)
 ***KEYWORDS MAXIMUM
 ***AUTHOR Painter, Jeffrey F., (LLNL)
 Revised by:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine MAXAF.)
 *Usage:
 INTEGER IFIRST, ILAST, ISTRID, IMAX
 INTEGER IARRAY(n), IAMAX, IMAXAF
 IAMAX = IMAXAF (IARRAY, IFIRST, ILAST, ISTRID, IMAX)

 *Arguments:
 IARRAY:IN Integer array to be searched.
 n, the dimension of the array, must be no less than
 ILAST.

 IFIRST:IN First subscript in the array to be searched.

 ILAST :IN Last subscript in the array to be searched.

 ISTRID:IN Increment (stride) between successive locations that
 are to be searched.

 IMAX :OUT Index of the maximum value in the array, i.e., the
 ordinal position of the value in the array.

 *Function Return Values:
 IAMAX : Maximum value in the array.

 *Description:
 IMAXAF finds the maximum value in a one-dimensional integer array,
 and returns its index. In case of multiple maxima, the last
 index found is returned.

 *Cautions:
 The array is assumed to be subscripted from 1.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830401 DATE WRITTEN (J. F. Painter)
 ***END PROLOGUE IMAXAF

PMATH Reference Manual - 72

IMINAF

 INTEGER FUNCTION IMINAF (IARRAY, IFIRST, ILAST, ISTRID, IMIN)
 ***BEGIN PROLOGUE IMINAF
 ***PURPOSE Minimum value in a one-dimensional array.
 ***LIBRARY PMATH
 ***CATEGORY N5A
 ***TYPE INTEGER (SMINAF-S, DMINAF-D, AMINF8-8, IMINAF-I)
 ***KEYWORDS MINIMUM
 ***AUTHOR Painter, Jeffrey F., (LLNL)
 Revised by:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine MINAF.)
 *Usage:
 INTEGER IFIRST, ILAST, ISTRID, IMIN
 INTEGER IARRAY(n), IAMIN, IMINAF
 IAMIN = IMINAF (IARRAY, IFIRST, ILAST, ISTRID, IMIN)

 *Arguments:
 IARRAY:IN Integer array to be searched.
 n, the dimension of the array, must be no less than
 ILAST.

 IFIRST:IN First subscript in the array to be searched.

 ILAST :IN Last subscript in the array to be searched.

 ISTRID:IN Increment (stride) between successive locations that
 are to be searched.

 IMIN :OUT Index of the minimum value in the array, i.e., the
 ordinal position of the value in the array.

 *Function Return Values:
 IAMIN : Minimum value in the array.

 *Description:
 IMINAF finds the minimum value in a one-dimensional integer array,
 and returns its index. In case of multiple minima, the last
 index found is returned.

 *Cautions:
 The array is assumed to be subscripted from 1.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830401 DATE WRITTEN (J. F. Painter)
 890502 Added prologue (T. Suyehiro)
 891025 Edited prologue for publication. (G. Shaw)
 ***END PROLOGUE IMINAF

PMATH Reference Manual - 73

IMINMX

 SUBROUTINE IMINMX (IARRAY, IFIRST, ILAST, ISTRID, IAMIN, IAMAX,
 + IMIN, IMAX)
 ***BEGIN PROLOGUE IMINMX
 ***PURPOSE Minimum and maximum values in a one-dimensional array.
 ***LIBRARY PMATH
 ***CATEGORY N5A
 ***TYPE INTEGER (SMINMX-S, DMINMX-D, AMNMX8-8, IMINMX-I)
 ***KEYWORDS MINIMUM, MAXIMUM
 ***AUTHOR Painter, Jeffrey F., (LLNL)
 Revised by:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine MINMX.)
 *Usage:
 INTEGER IFIRST, ILAST, ISTRID, IMIN, IMAX
 INTEGER IARRAY(n), IAMIN, IAMAX
 CALL IMINMX (IARRAY, IFIRST, ILAST, ISTRID, IAMIN, IAMAX,
 * IMIN, IMAX)

 *Arguments:
 IARRAY:IN Integer array to be searched.
 n, the dimension of the array, must be no less than
 ILAST.

 IFIRST:IN First subscript in the array to be searched.

 ILAST :IN Last subscript in the array to be searched.

 ISTRID:IN Increment (stride) between successive locations that
 are to be searched (>= 1).

 IAMIN :OUT Minimum value in the array.

 IAMAX :OUT Maximum value in the array.

 IMIN :OUT Index of the minimum value in the array, i.e., the
 ordinal position of the value in the array.

 IMAX :OUT Index of the maximum value in the array, i.e., the
 ordinal position of the value in the array.

 *Description:
 IMINMX finds the minimum and maximum values in a one-dimensional
 integer array, and returns their indices. In case of multiple
 extrema, the last index found is returned.

 ISTRID should be greater than or equal to 1. If ISTRID is less
 than 1, it is assumed to be 1.

 *Cautions:
 The array is assumed to be subscripted from 1.
 ***END PROLOGUE IMINMX

PMATH Reference Manual - 74

IUMACH

 INTEGER FUNCTION IUMACH()
 ***BEGIN PROLOGUE IUMACH
 ***PURPOSE Provide standard output unit number.
 ***LIBRARY PMATH
 ***CATEGORY R1
 ***TYPE INTEGER (IUMACH-I)
 ***KEYWORDS MACHINE CONSTANTS
 ***AUTHOR Hindmarsh, Alan C., (LLNL)
 ***DESCRIPTION
 *Usage:
 INTEGER LOUT, IUMACH
 LOUT = IUMACH()

 *Function Return Values:
 LOUT : the standard logical unit for Fortran output.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 930915 DATE WRITTEN
 930922 Made user-callable, and other cosmetic changes. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE IUMACH

PMATH Reference Manual - 75

LDFD

 INTEGER FUNCTION LDFD (X, T, N)
 ***BEGIN PROLOGUE LDFD
 ***PURPOSE Table look-down: locate a value in a decreasing table.
 ***LIBRARY PMATH
 ***CATEGORY N5B
 ***TYPE DOUBLE PRECISION (LDFS-S, LDFD-D, LDF8-8)
 ***KEYWORDS TABLE LOOK-UP
 ***AUTHOR Dubois, Paul F., (LLNL)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine LDF.)
 *Usage:
 INTEGER INDEX, LDFD, N
 DOUBLE PRECISION X, T(N)
 INDEX = LDFD (X, T, N)

 *Arguments:
 X :IN Any real number.
 T :IN Array of N strictly decreasing values (the table).
 N :IN Length of array T.

 *Function Return Values:
 INDEX The index of the first element in array T that is less
 than or equal to X. Possible values are:

 INDEX = 1, if X >= T(1) or N <= 0;
 1 < INDEX <= N, if T(INDEX-1) > X >= T(INDEX);
 INDEX = N + 1, if X < T(N).

 *Description:
 LDFD locates a value between elements of a decreasing table.

 ***REFERENCES P. F. Dubois, "Swimming upstream: Calculating table
 lookups and piecewise functions," in Parallel Computa-
 tions, G. Rodrigue, Ed., (Academic Press, New York,
 1982), pp.129-151.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 890509 Added prologue. (TS/FNF)
 890511 Augmented reference. (FNF)
 891025 Edited prologue for publication. (G. Shaw)
 930727 Corrected SLATEC-format prologue. (FNF)
 930930 Converted old UNICOS names to S- or I-names. (DBP)
 931005 Added list of equivalent routines and made sure that all
 variables (and the function itself) are declared. (FNF)
 ***END PROLOGUE LDFD

PMATH Reference Manual - 76

LDFS

 INTEGER FUNCTION LDFS (X, T, N)
 ***BEGIN PROLOGUE LDFS
 ***PURPOSE Table look-down: locate a value in a decreasing table.
 ***LIBRARY PMATH
 ***CATEGORY N5B
 ***TYPE SINGLE PRECISION (LDFS-S, LDFD-D, LDF8-8)
 ***KEYWORDS TABLE LOOK-UP
 ***AUTHOR Dubois, Paul F., (LLNL)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine LDF.)
 *Usage:
 INTEGER INDEX, LDFS, N
 REAL X, T(N)
 INDEX = LDFS (X, T, N)

 *Arguments:
 X :IN Any real number.
 T :IN Array of N strictly decreasing values (the table).
 N :IN Length of array T.

 *Function Return Values:
 INDEX The index of the first element in array T that is less
 than or equal to X. Possible values are:

 INDEX = 1, if X >= T(1) or N <= 0;
 1 < INDEX <= N, if T(INDEX-1) > X >= T(INDEX);
 INDEX = N + 1, if X < T(N).

 *Description:
 LDFS locates a value between elements of a decreasing table.

 ***REFERENCES P. F. Dubois, "Swimming upstream: Calculating table
 lookups and piecewise functions," in Parallel Computa-
 tions, G. Rodrigue, Ed., (Academic Press, New York,
 1982), pp.129-151.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 890509 Added prologue. (TS/FNF)
 890511 Augmented reference. (FNF)
 891025 Edited prologue for publication. (G. Shaw)
 930727 Corrected SLATEC-format prologue. (FNF)
 930930 Converted old UNICOS names to S- or I-names. (DBP)
 931005 Added list of equivalent routines and made sure that all
 variables (and the function itself) are declared. (FNF)
 931014 Changed SLDF to the default integer name LDFS. (FNF)
 931025 Removed unnecessary Caution. (FNF)
 940421 Improved category. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE LDFS

PMATH Reference Manual - 77

LUFD

 INTEGER FUNCTION LUFD (X, T, NBIG)
 ***BEGIN PROLOGUE LUFD
 ***PURPOSE Table look-up: locate a value in an increasing table.
 ***LIBRARY PMATH
 ***CATEGORY N5B
 ***TYPE DOUBLE PRECISION (LUFS-S, LUFD-D, LUF8-8)
 ***KEYWORDS TABLE LOOK-UP
 ***AUTHOR Dubois, Paul F., (LLNL)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine LUF.)
 *Usage:
 INTEGER INDEX, LUFD, N
 DOUBLE PRECISION X, T(N)
 INDEX = LUFD (X, T, N)

 *Arguments:
 X :IN Any real number.
 T :IN Array of N strictly increasing values (the table).
 N :IN Length of array T.

 *Function Return Values:
 INDEX The index of the first element in array T that is greater
 than X. Possible values are:

 INDEX = 1, if X < T(1) or N <= 0;
 1 < INDEX <= N, if T(INDEX-1) <= X < T(INDEX);
 INDEX = N + 1, if X >= T(N).

 *Description:
 LUFD locates a value between elements of an increasing table.

 ***REFERENCES P. F. Dubois, "Swimming upstream: Calculating table
 lookups and piecewise functions," in Parallel Computa-
 tions, G. Rodrigue, Ed., (Academic Press, New York,
 1982), pp.129-151.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 890509 Added prologue. (TS/FNF)
 890511 Augmented reference. (FNF)
 891025 Edited prologue for publication. (G. Shaw)
 930727 Corrected SLATEC-format prologue. (FNF)
 930930 Converted old UNICOS names to S- or I-names. (DBP)
 931004 Corrected name conversion errors. (FNF)
 ***END PROLOGUE LUFD

PMATH Reference Manual - 78

LUFS

 INTEGER FUNCTION LUFS (X, T, NBIG)
 ***BEGIN PROLOGUE LUFS
 ***PURPOSE Table look-up: locate a value in an increasing table.
 ***LIBRARY PMATH
 ***CATEGORY N5B
 ***TYPE SINGLE PRECISION (LUFS-S, LUFD-D, LUF8-8)
 ***KEYWORDS TABLE LOOK-UP
 ***AUTHOR Dubois, Paul F., (LLNL)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine LUF.)
 *Usage:
 INTEGER INDEX, LUFS, N
 REAL X, T(N)
 INDEX = LUFS (X, T, N)

 *Arguments:
 X :IN Any real number.
 T :IN Array of N strictly increasing values (the table).
 N :IN Length of array T.

 *Function Return Values:
 INDEX The index of the first element in array T that is greater
 than X. Possible values are:

 INDEX = 1, if X < T(1) or N <= 0;
 1 < INDEX <= N, if T(INDEX-1) <= X < T(INDEX);
 INDEX = N + 1, if X >= T(N).

 *Description:
 LUFS locates a value between elements of an increasing table.

 ***REFERENCES P. F. Dubois, "Swimming upstream: Calculating table
 lookups and piecewise functions," in Parallel Computa-
 tions, G. Rodrigue, Ed., (Academic Press, New York,
 1982), pp.129-151.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 890509 Added prologue. (TS/FNF)
 890511 Augmented reference. (FNF)
 891025 Edited prologue for publication. (G. Shaw)
 930727 Corrected SLATEC-format prologue. (FNF)
 930930 Converted old UNICOS names to S- or I-names. (DBP)
 931004 Corrected name conversion errors. (FNF)
 ***END PROLOGUE LUFS

PMATH Reference Manual - 79

LUGD

 INTEGER FUNCTION LUGD (X, T, N, IG)
 lll. optimize
 ***BEGIN PROLOGUE LUGD
 ***PURPOSE Table look-up with guess: locate a value in an increasing
 table.
 ***LIBRARY PMATH
 ***CATEGORY N5B
 ***TYPE DOUBLE PRECISION (LUGS-S, LUGD-D, LUG8-8)
 ***KEYWORDS TABLE LOOK-UP, ESTIMATED
 ***AUTHOR Dubois, Paul F., (LLNL)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine LUG.)
 *Usage:
 INTEGER INDEX, LUGD, N, IG
 DOUBLE PRECISION X, T(N)
 INDEX = LUGD (X, T, N, IG)

 *Arguments:
 X :IN Any real number.
 T :IN Array of N strictly increasing values (the table).
 N :IN Length of array T.
 IG :INOUT An estimated value for INDEX. On return, IG = INDEX.

 *Function Return Values:
 INDEX The index of the first element in array T that is
 greater than X. Possible values are:

 INDEX = 1, if X < T(1) or N <= 0;
 1 < INDEX <= N, if T(INDEX-1) <= X < T(INDEX);
 INDEX = N + 1, if X >= T(N).

 *Description:
 LUGD locates a value between elements of an increasing table with
 a guess, IG. If IG is close to the correct index, LUGD will be
 significantly faster than LUFD, especially on large tables. This
 routine is particularly useful when looking up a series of nearby
 values.

 ***REFERENCES P. F. Dubois, "Swimming upstream: Calculating table
 lookups and piecewise functions," in Parallel Computa-
 tions, G. Rodrigue, Ed., (Academic Press, New York,
 1982), pp.129-151.
 ***ROUTINES CALLED LUFD
 ***REVISION HISTORY (YYMMDD)
 790629 DATE WRITTEN
 ***END PROLOGUE LUGD

PMATH Reference Manual - 80

LUGS

 INTEGER FUNCTION LUGS (X, T, N, IG)
 lll. optimize
 ***BEGIN PROLOGUE LUGS
 ***PURPOSE Table look-up with guess: locate a value in an increasing
 table.
 ***LIBRARY PMATH
 ***CATEGORY N5B
 ***TYPE SINGLE PRECISION (LUGS-S, LUGD-D, LUG8-8)
 ***KEYWORDS TABLE LOOK-UP, ESTIMATED
 ***AUTHOR Dubois, Paul F., (LLNL)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine LUG.)
 *Usage:
 INTEGER INDEX, LUGS, N, IG
 REAL X, T(N)
 INDEX = LUGS (X, T, N, IG)

 *Arguments:
 X :IN Any real number.
 T :IN Array of N strictly increasing values (the table).
 N :IN Length of array T.
 IG :INOUT An estimated value for INDEX. On return, IG = INDEX.

 *Function Return Values:
 INDEX The index of the first element in array T that is
 greater than X. Possible values are:

 INDEX = 1, if X < T(1) or N <= 0;
 1 < INDEX <= N, if T(INDEX-1) <= X < T(INDEX);
 INDEX = N + 1, if X >= T(N).

 *Description:
 LUGS locates a value between elements of an increasing table with
 a guess, IG. If IG is close to the correct index, LUGS will be
 significantly faster than LUFS, especially on large tables. This
 routine is particularly useful when looking up a series of nearby
 values.

 ***REFERENCES P. F. Dubois, "Swimming upstream: Calculating table
 lookups and piecewise functions," in Parallel Computa-
 tions, G. Rodrigue, Ed., (Academic Press, New York,
 1982), pp.129-151.
 ***ROUTINES CALLED LUFS
 ***REVISION HISTORY (YYMMDD)
 790629 DATE WRITTEN
 (Above is "date last changed" found in source file.)
 ***END PROLOGUE LUGS

PMATH Reference Manual - 81

RANF8

 ***BEGIN PROLOGUE RANF8
 ***PURPOSE Uniform random-number generator.
 The pseudorandom numbers generated by SRANF/DRANF/RANF8
 are uniformly distributed in the open interval (0,1).
 ***LIBRARY PMATH
 ***CATEGORY L6A21
 ***TYPE REAL*8 (SRANF-S, DRANF-D, RANF8-8)
 ***KEYWORDS RANDOM NUMBER GENERATION, UNIFORM DISTRIBUTION
 ***AUTHOR Rathkopf, Jim, (LLNL/CP-Division)
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RANF.)
 *Usage:
 REAL*8 R, RANF8
 R = RANF8()

 *Function Return Values:
 R A random number between 0 and 1.

 *Description:
 RANF8 generates pseudorandom numbers lying strictly between 0
 and 1. Each call to RANF8 produces a different value, until the
 sequence cycles after 2**46 calls.

 RANF8 is a linear congruential pseudorandom-number generator.
 The default starting seed is
 SEED = 4510112377116321(oct) = 948253fc9cd1(hex).
 The multiplier is 1207264271730565(oct) = 2875a2e7b175(hex).

 *See Also:
 For exponentially distributed random numbers, use RLGF8 instead of
 RANF8.
 The starting seed for RANF8 may be set via RNSSET.
 The current RANF8 seed may be obtained from RNSGET.
 The RANF8 multiplier may be set via RNMSET (changing the
 multiplier is not recommended).
 The number of calls to RANF8 may be obtained from RNFCNT.

 *Portability:
 This C routine is contained in pmath_rnf.c, which requires header
 files pm_params.h, pm_cnvset.h, and pm_rnfset.h to set up correct
 Fortran binding.

 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 930308 DATE WRITTEN
 ***END PROLOGUE RANF8

PMATH Reference Manual - 82

RLFCNT

 ***BEGIN PROLOGUE RLFCNT
 ***PURPOSE Count the number of calls to RLGF family generators.
 ***LIBRARY PMATH
 ***CATEGORY L6C
 ***TYPE ALL (RLFCNT-A)
 ***KEYWORDS RANDOM NUMBER GENERATION, EXPONENTIAL DISTRIBUTION, COUNT
 ***AUTHOR Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RLGCNT.)
 *Usage:
 INTEGER NUM
 CALL RLFCNT (NUM)

 *Arguments:
 NUM :OUT Number of calls to RLGF8 since the beginning of the
 program.

 *Description:
 RLFCNT returns the number of calls to RLGF8 made since the
 beginning of the program. This count will also include any calls
 to SRLGF or DRLGF.

 *Portability:
 This C routine is contained in pmath_rlf.c, which requires header
 files pm_params.h, pm_cnvset.h, and pm_rlfset.h to set up correct
 Fortran binding.

 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 931022 DATE WRITTEN
 931122 Changed name from PM_RNFCNT to PM_RLFCNT. (FNF)
 940425 Added SLATEC-format prologue. (FNF)
 ***END PROLOGUE RLFCNT

PMATH Reference Manual - 83

RLGF8

 ***BEGIN PROLOGUE RLGF8
 ***PURPOSE Exponential random-number generator.
 The pseudorandom numbers generated by SRLGF/DRLGF/RLGF8
 are drawn from the exponential distribution with mean 1.
 ***LIBRARY PMATH
 ***CATEGORY L6A5
 ***TYPE REAL*8 (SRLGF-S, DRLGF-D, RLGF8-8)
 ***KEYWORDS RANDOM NUMBER GENERATION, EXPONENTIAL DISTRIBUTION
 ***AUTHOR Rathkopf, Jim, (LLNL/CP-Division)
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RLGF.)
 *Usage:
 REAL*8 R, RLGF8
 R = RLGF8()

 *Function Return Values:
 R A random number drawn from the exponential distribution
 with mean 1.

 *Description:
 RLGF8 takes the natural logarithm of uniform random numbers.
 RLGF8() should be used in place of the expression -LOG(RANF8()).
 Each call to RLGF8 produces a different value, until the sequence
 cycles after 2**46 calls.

 RLGF8 uses a linear congruential pseudorandom-number generator
 which is identical to RANF8 except that the default starting seed
 is different:
 SEED = 7315512527213717(oct) = ecda555d17cf(hex).
 The multiplier is 1207264271730565(oct) = 2875a2e7b175(hex).
 The SRLGF/DRLGF/RLGF8 sequence is independent of that generated
 by SRANF/DRANF/RANF8.

 *Cautions:
 Note that if you are using both RANF8 and RLGF8, stopping and
 restarting both sequences will require calling both RNSGET/RNSSET
 and RLSGET/RLSSET.

 *Portability:
 This C routine is contained in pmath_rlf.c, which requires header
 files pm_params.h, pm_cnvset.h, and pm_rlfset.h to set up correct
 Fortran binding.

 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 ***END PROLOGUE RLGF8

PMATH Reference Manual - 84

RLMSET

 ***BEGIN PROLOGUE RLMSET
 ***PURPOSE Set multiplier for RLGF family generators.
 ***LIBRARY PMATH
 ***CATEGORY L6C
 ***TYPE ALL (RLMSET-A)
 ***KEYWORDS RANDOM NUMBER GENERATION, EXPONENTIAL DISTRIBUTION,
 MULTIPLIER
 ***AUTHOR Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RLGMSET.)
 *Usage:
 INTEGER NEWMUL
 CALL RLMSET (NEWMUL)
 or
 INTEGER NEWMUL
 REAL*8 OLDMUL, RNMUSET
 OLDMUL = RLMSET(NEWMUL)

 *Arguments:
 NEWMUL :IN The new multiplier desired (odd, >1, <2**46).

 *Function Return Values:
 OLDMUL = 0 NEWMUL replaced the multiplier.
 = non-0 The old multiplier, if it was not replaced.

 This alternate calling form is intended for use in a statement
 of the form
 IF (RLMSET(NEWMUL).NE.0) GO TO ERROR

 *Description:
 RLMSET changes the multiplier used by SRLGF/DRLGF/RLGF8.
 See "Cautions" below!

 NEWMUL must be odd and greater than 1. It must also be less than
 2**46 = 70368744177664. If any of these checks fail, the multi-
 plier will not be changed, and a nonzero value is returned. (The
 default multiplier is 1207264271730565(oct) = 2875a2e7b175(hex).)

 *Cautions:
 Changing the multiplier is NOT recommended. Most values are poor
 multipliers. A poor multiplier will cause the sequence of pseudo-
 random numbers to have very undesirable statistical properties.
 *Portability:
 This C routine is contained in pmath_rlf.c, which requires header
 files pm_params.h, pm_cnvset.h, and pm_rlfset.h to set up correct
 Fortran binding.

 *See Also:
 SRLGF/DRLGF/RLGF8 is the exponential random-number generator.
 CV16TO64 may be useful for constructing NEWMUL.
 CV64TO16 may be useful for saving OLDMUL.

 ***ROUTINES CALLED CV16TO64, CV64TO16
 ***REVISION HISTORY (YYMMDD)
 950928 Added return value, as in MATHLIB routine, and corrected
 to not reset to the default value when input argument is

PMATH Reference Manual - 85

 zero. (FNF)
 951002 Replaced union (that doesn't work on the Cray) with coding
 that calls PM_16TO64 or PM_64TO16 (i.e., CV16TO64 or
 CV64TO16). (FNF)
 951027 Added upper bound restriction and added checks that the
 input value is an acceptable multiplier. (FNF)
 ***END PROLOGUE RLMSET

PMATH Reference Manual - 86

RLSGET

 ***BEGIN PROLOGUE RLSGET
 ***PURPOSE Get seed for RLGF family generators.
 ***LIBRARY PMATH
 ***CATEGORY L6C
 ***TYPE ALL (RLSGET-A)
 ***KEYWORDS RANDOM NUMBER GENERATION, EXPONENTIAL DISTRIBUTION, SEED
 ***AUTHOR Rathkopf, Jim, (LLNL/CP-Division)
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RLGGET.)
 *Usage:
 REAL*8 SEED, RLSGET
 SEED = RLSGET ()

 *Function Return Values:
 SEED The seed after the return from RLSGET.

 *Description:
 RLSGET returns the value of the current SRLGF/DRLGF/RLGF8 seed.
 This value can be saved and used with RLSSET to reproduce a
 portion of the SRLGF/DRLGF/RLGF8 sequence.

 *Cautions:
 The exact bit pattern of SEED is important. If SEED is to be used
 to reset the sequence via RLSSET, it should not be modified in any
 way.

 RLSGET is a function of type REAL*8. This means that both RLSGET
 and SEED should be typed REAL*8, as above. Otherwise, Fortran's
 implicit type conventions will assume that both SEED and RLSGET
 are type REAL. This works on the Cray, but not on workstations
 which have 32-bit words, since the seed requires 48 bits. In any
 case, do not perform any arithmetic with the seed.

 *Portability:
 This C routine is contained in pmath_rlf.c, which requires header
 files pm_params.h, pm_cnvset.h, and pm_rlfset.h to set up correct
 Fortran binding.

 *See Also:
 SRLGF/DRLGF/RLGF8 is the exponential random-number generator.
 RLSSET changes the value of the SRLGF/DRLGF/RLGF8 seed.
 CV64TO16 may be useful for saving SEED.

 ***ROUTINES CALLED CV16TO64
 ***REVISION HISTORY (YYMMDD)
 930308 DATE WRITTEN
 ***END PROLOGUE RLSGET

PMATH Reference Manual - 87

RLSSET

 ***BEGIN PROLOGUE RLSSET
 ***PURPOSE Set seed for RLGF family generators.
 ***LIBRARY PMATH
 ***CATEGORY L6C
 ***TYPE ALL (RLSSET-A)
 ***KEYWORDS RANDOM NUMBER GENERATION, EXPONENTIAL DISTRIBUTION, SEED
 ***AUTHOR Rathkopf, Jim, (LLNL/CP-Division)
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RLGSET.)
 *Usage:
 REAL*8 SEED
 CALL RLSSET (SEED)

 *Arguments:
 SEED :IN The new seed desired.

 *Description:
 RLSSET changes the value of the SRLGF/DRLGF/RLGF8 seed.
 It can be used inconjunction with RLSGET to reproduce a
 portion of the SRLGF/DRLGF/RLGF8 sequence.

 SEED must be a REAL*8 variable. It should be odd, but if it
 is not, RLSSET makes it odd. Only the lower 48 bits of SEED
 are used.

 If SEED = 0, the default seed is used:
 SEED = 7315512527213717(oct) = ecda555d17cf(hex).
 that is, the sequence is restarted.

 *Cautions:
 The next value of RLGF8 will be -log(SEED * 2**-48). It is
 recommended to call RLGF8 several times without using the results
 in order to avoid unusually small numbers.

 On workstations, which have 32-bit floating point and often have
 16-bit integer arithmetic by default, some care may be required
 to insure that all bits of SEED are correctly transmitted to
 RLSSET. This can be accomplished by using CV16TO64 to load it.
 For example, to set the seed to 1234567890ab(hex):
 INTEGER ISEED(3)
 REAL*8 SEED
 DATA ISEED /X'1234', X'5678', X'90AB'/
 CALL CV16TO64 (ISEED, SEED)
 CALL RLSSET (SEED)

 *Portability:
 This C routine is contained in pmath_rlf.c, which requires header
 files pm_params.h, pm_cnvset.h, and pm_rlfset.h to set up correct
 Fortran binding.

 ***ROUTINES CALLED CV64TO16
 ***REVISION HISTORY (YYMMDD)
 950927 Replaced rnset call and unnecessary multiplier resetting by
 a direct call to rand48_16to24. (FNF)
 950927 Corrected erroneous default seed when SEED=0. (Previously

PMATH Reference Manual - 88

 it set to the RANF value.) (FNF)
 951002 Replaced union (that doesn't work on the Cray) with coding
 that calls PM_64TO16 (i.e., CV64TO16). (FNF)
 951027 Implemented check for odd SEED. (FNF)
 ***END PROLOGUE RLSSET

PMATH Reference Manual - 89

RNFCNT

 ***BEGIN PROLOGUE RNFCNT
 ***PURPOSE Count the number of calls to RANF family generators.
 ***LIBRARY PMATH
 ***CATEGORY L6C
 ***TYPE ALL (RNFCNT-A)
 ***KEYWORDS RANDOM NUMBER GENERATION, UNIFORM DISTRIBUTION, COUNT
 ***AUTHOR Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RNCOUNT.)
 *Usage:
 INTEGER NUM
 CALL RNFCNT (NUM)

 *Arguments:
 NUM :OUT Number of calls to RANF8 since the beginning of the
 program.

 *Description:
 RNFCNT returns the number of calls to RANF8 made since the
 beginning of the program. This count will also include any calls
 to SRANF or DRANF.

 *Portability:
 This C routine is contained in pmath_rnf.c, which requires header
 files pm_params.h, pm_cnvset.h, and pm_rnfset.h to set up correct
 Fortran binding.

 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 931022 DATE WRITTEN
 940425 Added SLATEC-format prologue. (FNF)
 ***END PROLOGUE RNFCNT

PMATH Reference Manual - 90

RNMSET

 ***BEGIN PROLOGUE RNMSET
 ***PURPOSE Set multiplier for RANF family generators.
 ***LIBRARY PMATH
 ***CATEGORY L6C
 ***TYPE ALL (RNMSET-A)
 ***KEYWORDS RANDOM NUMBER GENERATION, UNIFORM DISTRIBUTION, MULTIPLIER
 ***AUTHOR Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RNMUSET.)
 *Usage:
 INTEGER NEWMUL
 CALL RNMSET (NEWMUL)
 or
 INTEGER NEWMUL
 REAL*8 OLDMUL, RNMUSET
 OLDMUL = RNMSET(NEWMUL)

 *Arguments:
 NEWMUL :IN The new multiplier desired (odd, >1, <2**46).

 *Function Return Values:
 OLDMUL = 0 NEWMUL replaced the multiplier.
 = non-0 The old multiplier, if it was not replaced.

 This alternate calling form is intended for use in a statement
 of the form
 IF (RNMSET(NEWMUL).NE.0) GO TO ERROR

 *Description:
 RNMSET changes the multiplier used by SRANF/DRANF/RANF8.
 See "Cautions" below!

 NEWMUL must be odd and greater than 1. It must also be less than
 2**46 = 70368744177664. If any of these checks fail, the multi-
 plier will not be changed, and a nonzero value is returned. (The
 default multiplier is 1207264271730565(oct) = 2875a2e7b175(hex).)

 *Cautions:
 Changing the multiplier is NOT recommended. Most values are poor
 multipliers. A poor multiplier will cause the sequence of pseudo-
 random numbers to have very undesirable statistical properties.
 If the actual value of the multiplier is desired, it and RNMSET
 must be typed REAL*8, as indicated above, so that the result is
 large enough to hold a 48-bit integer. OLDMUL must not be changed
 in any way if it is to be used in a subsequent RNMSET call.

 *Portability:
 This C routine is contained in pmath_rnf.c, which requires header
 files pm_params.h, pm_cnvset.h, and pm_rnfset.h to set up correct
 Fortran binding.

 ***ROUTINES CALLED CV16TO64, CV64TO16
 ***REVISION HISTORY (YYMMDD)
 931109 DATE WRITTEN
 (Created from PM_RNSSET.)
 931215 Reversed order of bytes in multiplier to agree with Cray. (FNF)

PMATH Reference Manual - 91

 940425 Added SLATEC-format prologue. (FNF)
 950913 Added conditional-compile blocks to not reverse byte order
 if on DEC. (FNF)
 950927 Replaced rnset call and unnecessary seed resetting by a
 direct call to rand48_16to24. (FNF)
 950928 Added return value, as in MATHLIB routine, and corrected
 to not reset to the default value when input argument is
 zero. (FNF)
 951002 Replaced union (that doesn't work on the Cray) with coding
 that calls PM_16TO64 or PM_64TO16 (i.e., CV16TO64 or
 CV64TO16). (FNF)
 951027 Added upper bound restriction and added checks that the
 input value is an acceptable multiplier. (FNF)
 ***END PROLOGUE RNMSET

PMATH Reference Manual - 92

RNSGET

 ***BEGIN PROLOGUE RNSGET
 ***PURPOSE Get seed for RANF family generators.
 ***LIBRARY PMATH
 ***CATEGORY L6C
 ***TYPE ALL (RNSGET-A)
 ***KEYWORDS RANDOM NUMBER GENERATION, UNIFORM DISTRIBUTION, SEED
 ***AUTHOR Rathkopf, Jim, (LLNL/CP-Division)
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RANGET.)
 *Usage:
 REAL*8 SEED, RNSGET
 SEED = RNSGET ()

 *Function Return Values:
 SEED The seed after the return from RNSGET.

 *Description:
 RNSGET returns the value of the current SRANF/DRANF/RANF8 seed.
 This value can be saved and used with RNSSET to reproduce a
 portion of the SRANF/DRANF/RANF8 sequence.

 *Cautions:
 The exact bit pattern of SEED is important. If SEED is to be used
 to reset the sequence via RNSSET, it should not be modified in any
 way.

 RNSGET is a function of type REAL*8. This means that both RNSGET
 and SEED should be typed REAL*8, as above. Otherwise, Fortran's
 implicit type conventions will assume that both SEED and RNSGET
 are type REAL. This works on the Cray, but not on workstations
 which have 32-bit words, since the seed requires 48 bits. In any
 case, do not perform any arithmetic with the seed.

 *Portability:
 This C routine is contained in pmath_rnf.c, which requires header
 files pm_params.h, pm_cnvset.h, and pm_rnfset.h to set up correct
 Fortran binding.

 *See Also:
 SRANF/DRANF/RANF8 is the basic uniform random-number generator.
 RNSSET changes the value of the SRANF/DRANF/RANF8 seed.
 CV64TO16 may be useful for saving SEED.

 ***ROUTINES CALLED CV16TO64
 ***REVISION HISTORY (YYMMDD)
 930308 DATE WRITTEN
 ***END PROLOGUE RNSGET

PMATH Reference Manual - 93

RNSSET

 ***BEGIN PROLOGUE RNSSET
 ***PURPOSE Set seed for RANF family generators.
 ***LIBRARY PMATH
 ***CATEGORY L6C
 ***TYPE ALL (RNSSET-A)
 ***KEYWORDS RANDOM NUMBER GENERATION, UNIFORM DISTRIBUTION, SEED
 ***AUTHOR Rathkopf, Jim, (LLNL/CP-Division)
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RANSET.)
 *Usage:
 REAL*8 SEED
 CALL RNSSET (SEED)

 *Arguments:
 SEED :IN The new seed desired.

 *Description:
 RNSSET changes the value of the SRANF/DRANF/RANF8 seed.
 It can be used in conjunction with RNSGET to reproduce a
 portion of the SRANF/DRANF/RANF8 sequence.

 SEED must be a REAL*8 variable. It should be odd, but if it
 is not, RNSSET makes it odd. Only the lower 48 bits of SEED
 are used.

 If SEED = 0, the default seed is used:
 SEED = 4510112377116321(oct) = 948253fc9cd1(hex);
 that is, the sequence is restarted.

 *Cautions:
 The next value of RANF8 will be SEED * 2**-48. It is recommended
 to call RANF8 several times without using the results in order to
 avoid unusually small numbers.

 *Portability:
 This C routine is contained in pmath_rnf.c, which requires
 header files pm_params.h, pm_cnvset.h, and pm_rnfset.h to set up
 corrent Fortran binding.

 ***ROUTINES CALLED CV64TO16
 ***REVISION HISTORY (YYMMDD)
 930308 DATE WRITTEN
 (Date from Biester's math_rnf.c.)
 ***END PROLOGUE RNSSET

PMATH Reference Manual - 94

RUMACH

 REAL FUNCTION RUMACH ()
 ***BEGIN PROLOGUE RUMACH
 ***PURPOSE Compute the unit roundoff of the machine.
 ***LIBRARY PMATH
 ***CATEGORY R1
 ***TYPE SINGLE PRECISION (RUMACH-S, DUMACH-D, UMACH8-8)
 ***KEYWORDS MACHINE CONSTANTS
 ***AUTHOR Hindmarsh, Alan C., (LLNL)
 ***DESCRIPTION
 *Usage:
 REAL A, RUMACH
 A = RUMACH()

 *Function Return Values:
 A : the unit roundoff of the machine.

 *Description:
 The unit roundoff is defined as the smallest positive machine
 number u such that 1.0 + u .ne. 1.0. This is computed by RUMACH
 in a machine-independent manner.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 930216 DATE WRITTEN
 930818 Added SLATEC-format prologue. (FNF)
 940315 Added REAL*8 name to C***TYPE line. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE RUMACH

PMATH Reference Manual - 95

SCONST

 REAL FUNCTION SCONST (NAME)
 ***BEGIN PROLOGUE SCONST
 ***PURPOSE Provides values for common mathematical constants.
 ***LIBRARY PMATH
 ***CATEGORY R1
 ***TYPE SINGLE PRECISION (SCONST-S, DCONST-D, CONST8-8)
 ***KEYWORDS CONSTANTS, PI, TWOPI, PI180, PI3, TWOPI3, FOURPI3, UROUND,
 ONE3, ONE27
 ***AUTHOR Basinger, R.C., (LLNL/CMRD)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine CONSTANT.)
 *Usage:
 CHARACTER*n NAME
 REAL VALUE, SCONST

 NAME = 'name'
 VALUE = SCONST (NAME)
 or
 VALUE = SCONST ('name')

 *Arguments:
 NAME :IN Name of the desired constant. Valid names and their
 meanings are:

 I Name Value Meaning
 - --------- -------- -------------------------------
 1 'pi' pi PI = 4.0*ATAN(1.0)
 2 'twopi' 2pi 2.0*PI
 3 'pi180' pi/180 PI/180.0
 4 'pi3' pi/3 PI/3.0
 5 'twopi3' 2pi/3 2.0*PI/3.0
 6 'fourpi3' 4pi/3 4.0*PI/3.0
 7 'uround' unit The smallest positive floating-
 roundoff point number such that
 1.0 + 'uround' .NE. 1.0
 8 'one3' 1/3 1.0/3.0
 9 'one27' 1/27 1.0/27.0

 Here "pi" in the Value column represents the Greek letter pi,
 the standard notation for the ratio of the circumference to the
 diameter of a circle.

 The name of the constant may be given in either upper or lower
 case (but not mixed case).

 *Function Return Values:
 VALUE : the value of the named constant.

 *Description:
 SCONST provides values for commonly used mathematical constants.
 This provides a machine-independent way to obtain corrent values
 for these constants.

 *Accuracy:

PMATH Reference Manual - 96

 All values except for element 7 are data-loaded with 32-digit
 decimal constants generated using Macsyma. We rely on the
 compiler generating correctly rounded machine values from them.
 SCONST('uround') is obtained from RUMACH.

 *Cautions:
 The present version terminates with a STOP statement if NAME is
 not a valid name.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED RUMACH
 ***REVISION HISTORY (YYMMDD)
 820514 DATE WRITTEN
 (The above is the date found in the source code. It may be
 an underestimate of the age of this routine.)
 890224 Added SLATEC/LDOC prologue. (FNF)
 890301 Made changes to comments per feedback from Tok. (FNF)
 890301 Replaced double quote (") as string delimiter in DATA
 statements with the ANSI standard single quote ('). (FNF)
 900627 Changed hexidecimal constants from CIVIC to CFT77 form.(FNF)
 920313 Made minor cosmetic changes and changed DATA-loaded value
 of N to the actual number of available constants. (FNF)
 920316 Modified to recognize either upper or lower case names.
 Removed the common blocks in the process. (FNF)
 920319 Updated with prologue edited 891025 by G. Shaw for manual.
 930823 1. Replaced calls to BASELIB routine ZVSEEK with a loop.
 2. Rearranged DATA statements to facilitate subsequent
 changes. (FNF)
 930824 Changed names from INTEGER to the more standard CHARACTER
 type. (FNF)
 930826 Eliminated distinction between N, the number of constants,
 and the dimensions of the arrays. (FNF)
 ***END PROLOGUE SCONST

PMATH Reference Manual - 97

SCORRV

 SUBROUTINE SCORRV (VCV, M, WK)
 ***BEGIN PROLOGUE SCORRV
 ***PURPOSE Calculate the correlation matrix from the variance-
 covariance matrix.
 ***LIBRARY PMATH
 ***CATEGORY L1B
 ***TYPE SINGLE PRECISION (SCORRV-S, DCORRV-D, CORRV8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, CORRELATION MATRIX
 ***AUTHOR Unknown, Name (LLNL/USD/NMG)
 Durst, Mark J. (LLNL/CMRD/SPG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine CORRV.)
 *Usage:
 INTEGER M
 PARAMETER (nvcv = (M*(M+1))/2)
 REAL VCV(nvcv), WK(M)
 CALL SCORRV (VCV, M, WK)

 *Arguments:
 VCV:INOUT Input: Array of order M(M + 1)/2 containing the
 variance-covariance matrix in symmetric storage mode.
 Output: Array containing the correlation matrix in
 symmetric storage mode.
 M :IN Number of variables for which correlations are
 calculated.
 WK :WORK Work array of order M.

 *Description:
 SCORRV calculates the correlation matrix from the variance-
 covariance matrix stored in VCV in symmetric storage mode. The
 correlation matrix will replace VCV on return.

 "Symmetric storage mode" means (S is taken to be the full matrix):

 VCV(k) = S(i,j), k = (i(i - 1))/2 + j, i = 1,...,M, j <= i

 *See Also:
 SCORRV can be used in conjunction with SCOVAR to obtain both the
 variance-covariance and correlation matrices.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 931005 Augmented list of equivalent routines, made sure that all
 variables are declared, and improved comments. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE SCORRV

PMATH Reference Manual - 98

SCOVAR

 SUBROUTINE SCOVAR (A, N, M, IND, VCV, SD, WK)
 ***BEGIN PROLOGUE SCOVAR
 ***PURPOSE Variance-covariance or correlation matrix of a
 two-dimensional real array.
 Calculates the standard deviations and the variance-
 covariance or correlation matrix for N observations on
 each of M variables.
 ***LIBRARY PMATH
 ***CATEGORY L1B
 ***TYPE SINGLE PRECISION (SCOVAR-S, DCOVAR-D, COVAR8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, STANDARD DEVIATION, VECTOR,
 VARIANCE-COVARIANCE MATRIX, CORRELATION MATRIX
 ***AUTHOR Unknown, Name (LLNL/USD/NMG)
 Durst, Mark J. (LLNL/CMRD/SPG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine COVARV.)
 *Usage:
 INTEGER N, M, IND
 PARAMETER (nvcv = (M*(M+1))/2)
 REAL A(N,M), VCV(nvcv), SD(M), WK(M)
 CALL SCOVAR (A, N, M, IND, VCV, SD, WK)

 *Arguments:
 A :IN N by M array of N observations on M variables.
 N :IN Row dimension of A.
 M :IN Column dimension of A.
 IND:IN Job-control flag:
 0 Return the variance-covariances.
 non-0 Return correlations.
 VCV:OUT Array of order M(M+1)/2 containing either the
 variance-covariances or correlations in symmetric
 storage mode, depending on the value of IND.
 SD :OUT Array of order M containing the standard deviations.
 WK:WORK Work array of order M.

 *Description:
 SCOVAR calculates the standard deviations in SD and the
 variance-covariance matrix in VCV in symmetric storage mode. If
 IND does not equal 0, it then calls SCORRV to calculate the
 correlation matrix from the variance-covariance matrix.
 "Symmetric storage mode" meads (S is taken to be the full matrix):

 VCV(k) = S(i,j), k = (1(i-1))/2 + j, i = 1,...,M, j <=1

 *See Also:
 If both the variance-covariance matrix and the correlation matrix
 are required, first call SCOVAR with IND = 0. Then copy VCV into
 the desired array for the correlation matrix and call SCORRV.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED SCORRV
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 (The above is the date of LCSD-442,Rev.1 and is undoubtedly

PMATH Reference Manual - 99

 a significant underestimate of the age of this routine.)
 890223 Added SLATEC/LDOC prologue. (FNF)
 890518 Modified sequence numbers to fit in columns 73-80. (FNF)
 890518 1. Replaced expr**.5 with sqrt(expr)--one occurrence. (FNF)
 2. Corrected dimension for array VCV. (FNF)
 890519 Eliminated redundant variable ink.
 920319 Updated with prologue edited 891025 by G. Shaw for manual.
 930706 Corrected C***CATEGORY line. (FNF)
 930930 Converted old UNICOS names to S- or I-names. (DBP)
 931005 Corrected list of equivalent routines, made sure that all
 variables are declared, and improved comments. (FNF)
 931026 Minor changes to reduce single/double differences. (FNF)
 940421 Improved purpose. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE SCOVAR

PMATH Reference Manual - 100

SFITPO

 SUBROUTINE SFITPO (XDATA, YDATA, NDATA, NTERMS, WEIGHT, COEFF,
 + RSD2, WORK, JOB, IERR)
 ***BEGIN PROLOGUE SFITPO
 ***PURPOSE Fit a polynomial to given data.
 Finds the polynomial that is the best least-squares
 fit to a given set of data points.
 ***LIBRARY PMATH
 ***CATEGORY K1A1A2, L8B1B1
 ***TYPE SINGLE PRECISION (SFITPO-S, DFITPO-D, FITPO8-8)
 ***KEYWORDS POLYNOMIAL FITTING, LEAST SQUARES
 ***AUTHOR Painter, Jeffrey F., (LLNL/CMRD)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine FITPOL.)
 *Usage:
 INTEGER NDATA, NTERMS, JOB, IERR
 PARAMETER (NWORK = (NDATA+1)*(NTERMS+1))
 REAL XDATA(NDATA), YDATA(NDATA), WEIGHT(NDATA), COEFF(NTERMS),
 * RSD2, WORK(NWORK)

 CALL SFITPO (XDATA, YDATA, NDATA, NTERMS, WEIGHT, COEFF,
 * RSD2, WORK, JOB, IERR)

 *Arguments:
 In the following, the data points are
 (x(i),y(i)) = (XDATA(i), YDATA(i)), i=1,...,NDATA.

 XDATA :IN Array of values of the independent variable, x, among
 which there must be at least NTERMS different values.
 Its dimension is NDATA.

 YDATA :IN Array of corresponding values of the dependent
 variable, y. Its dimension is NDATA.

 NDATA :IN The number of data points to be fit.

 NTERMS:IN The number of terms in the polynomial (i.e., SFITPO
 is to determine a polynomial of degree NTERMS - 1).
 If NTERMS > NDATA, the result will be the coefficients
 of an interpolating polynomial of degree NDATA-1, and
 COEFF(j) = 0 for j > NDATA.

 WEIGHT:IN Optional weight array.

 If WEIGHT(1) is equal to zero, SFITPO will choose
 COEFF to minimize the sum of the squares of the
 residuals. In this case, WEIGHT need not be
 dimensioned and can, indeed, be the literal 0.E0.

 Otherwise, WEIGHT must be an array of dimension
 NDATA, with WEIGHT(1) nonzero, and SFITPO will choose
 COEFF to minimize the sum of the squares of the
 weighted residuals,
 R(i) = WEIGHT(i)*(y(i) - p(x(i))), i=1,2,...,NDATA.
 (See Description, below, for definition of p(x).)

PMATH Reference Manual - 101

 COEFF:OUT Array containing the NTERMS coefficients of the poly-
 nomial. COEFF(j) is the coefficient of x**(j-1).

 RSD2 :OUT Sum of the squares of the (weighted) residuals
 corresponding to COEFF.

 WORK :WORK Array used primarily for internal computations. NWORK,
 its dimension, must be at least (NDATA+1)*(NTERMS+1).
 If JOB is nonzero, the first NDATA words of WORK will
 contain the residuals (or weighted residuals, if the
 weighting option was chosen) on return:
 WORK(i) = R(i), i = 1,2,...,NDATA.
 Note that if SREFIT is to be used for subsequent fits,
 WORK must not be modified in any way.

 JOB :IN Residuals-computation flag:
 non-0 Residuals are computed and output in WORK.
 0 Residuals are not completely computed,
 although RSD2 is computed. (This option will
 more efficient if the R(i) are not required.)

 IERR :OUT Error flag. On normal termination, IERR = 0.

 Warning error: IERR <= -4
 In this case the problem looks poorly conditioned,
 so that all components of COEFF may be inaccurate.
 10**(-IERR) will be a lower bound for the condition
 number, and COEFF will be computed anyway.
 (See "Accuracy" below for details.)

 Fatal error:
 SQRSL returned INFO=IERR: 0 < IERR <= NTERMS
 A singular matrix has been detected. This may be
 due to too many values of XDATA(i) exactly equal
 or too many weights equal to zero.
 COEFF has not been computed in this case.

 *Description:
 SFITPO finds the polynomial that is the best least-squares fit to
 a given set of data points

 (x(i),y(i)) = (XDATA(i),YDATA(i)), i = 1, 2, ..., NDATA .

 It finds coefficients COEFF(1), ..., COEFF(NTERMS) of the
 polynomial

 y = p(x) = COEFF(1) + COEFF(2)*x + COEFF(3)*x**2 + ...
 + COEFF(NTERMS)*x**(NTERMS-1) ,

 which minimize the sum of the squares of the residuals

 R(i) = y(i) - p(x(i)), i = 1, 2, ..., NDATA .

 As an option, the residuals may be weighted, as noted above.

 If the range of x-values is far from zero, SFITPO may introduce
 extra inaccuracies in the results, especially in lower-order
 coefficients. A way to get better results is to choose a typical
 value of x, say x0, and define

PMATH Reference Manual - 102

 xnew(i) = x(i) - x0, i = 1, 2, ..., NDATA .

 Then instead of

 CALL SFITPO (x, ...)

 use

 CALL SFITPO (xnew, ...) .

 The result will be coefficients for the polynomial

 y = p(xnew) = p(x-x0) .

 Let A denote the matrix whose i-th row is

 (1 XDATA(i) XDATA(i)**2 XDATA(i)**(NTERMS-1))

 (This row is multiplied by WEIGHT(i) if the weighting option has
 been chosen.) A is called the least-squares matrix. The solution
 to the least-squares problem is found by way of a QR decomposition
 of A, without pivoting, using LINPACK routines SQRDC and SQRSL.

 The covariance matrix of COEFF can be estimated after a call of
 SFITPO. If all the data points y = YDATA(i) have the same
 variance v(y), then the covariance matrix is v(y) times the
 inverse of the product of A-transpose (denoted At) and A:

 cov = v(y) * inv(At*A) ,

 An estimate of v(y) is RSD2/(NDATA - NTERMS). The following
 call of a LINPACK subroutine (Ref. 1) will compute inv(At*A):

 CALL SPODI (WORK(2+NDATA), NDATA, NTERMS, DUMMY, 1)

 where WORK, NDATA, and NTERMS are the same variables as in
 SFITPO, WORK has not been disturbed since the last SFITPO call,
 and DUMMY is not referenced. Only WORK is changed. For i <= j,
 SPODI puts the (i,j)th element of inv(At*A) (which equals the
 (j,i)th element) into WORK(i+j*NDATA+1). CAUTION: Since this
 changes WORK, SREFIT cannot be called after such a call of SPODI.

 Sometimes an expression involving inv(At*A) can be evaluated
 without computing the inverse; if so, and if NTERMS is large, it
 will be cheaper not to compute the inverse. An equation of the
 form

 (At*A) * w = b

 can best be solved for w by the following call of a LINPACK
 routine (Ref. 1):

 CALL SPOSL (WORK(2+NDATA), NDATA, NTERMS, BW)

 where WORK, NDATA, and NTERMS are input variables, undisturbed
 since the last SFITPO call, and BW is a real vector of dimension
 NTERMS. On input, BW is b, and on output, it is w. Since SPOSL
 does not change WORK, you may call SREFIT or SPOSL after calling

PMATH Reference Manual - 103

 SPOSL.

 *Examples:
 See the SREFIT writeup for a sample call of SFITPO.

 The following sample code is a faster way to evaluate the
 polynomial Y = p(X) than the most straightforward approach.

 Y = COEFF(NTERMS)
 DO 10 J = 1, (NTERMS - 1)
 10 Y = X*Y + COEFF(NTERMS - J)

 *Accuracy:
 SFITPO finds a lower bound for the condition number K of the
 problem. This number is relevant because SFITPO will introduce an
 error in each COEFF(j) (j = 1,2,...,NTERMS) that is roughly
 proportional to K times the largest of these coefficients (larger
 if there are large values of x in the data). If the condition-
 number estimate is over 10,000, then the error flag IERR will be
 set to a negative number so that K is greater than 10**(|IERR|).
 It is unlikely that K will be any larger than 10**(|IERR| + 2).
 As a rule of thumb, this means that the largest of the
 coefficients may have lost about |IERR| + 2 digits of accuracy.
 The same absolute error estimate applies to all of the
 coefficients; thus, if COEFF(j) is smaller than the largest
 coefficient by a factor of 10**n, it will have lost |IERR| + 2 + n
 digits of accuracy. If some values of x are large and if NTERMS
 is large, then lower-order coefficients will be less accurate.
 For details, see Ref. 1, pp. I.8-I.11 and 9.4-9.5, and Ref. 2,
 pp. 28-35.

 The above discussion applies to the mathematical fitting problem;
 of course there may be other inaccuracies from the input data.
 Furthermore, the polynomial computed when IERR < 0 may be
 perfectly acceptable if all one needs is a function that produces
 small residuals.

 *Cautions:
 SFITPO assumes 1 <= NTERMS, NDATA. This is not checked.
 See description of NTERMS for behavior when NTERMS > NDATA.

 This is a simple program for simple problems. It is not
 recommended for large problems.

 *Portability:
 This routine calls the LINPACK routines SQRDC and SQRSL, and BLAS
 (Basic Linear Algebra Subprograms) SDOT.

 The declaration REAL WORK(NDATA,*) is used to cause the
 compiler to generate suitable subscript arithmetic for the
 NDATA by NTERMS least-squares matrix stored starting at element
 WORK(2,2) = WORK(NDATA+2). Some compilers may object to
 the fact that (I+1)>NDATA when I=NDATA in loops 10, 30 and 50.

 ***ROUTINES CALLED SDOT, SQRDC, SQRSL
 ***REVISION HISTORY (YYMMDD)
 800301 DATE WRITTEN
 890419 Added SLATEC/LDOC prologue. (FNF)
 890424 Corrected DATE WRITTEN. (FNF)
 890518 Modified sequence numbers to fit in columns 73-80. (FNF)

PMATH Reference Manual - 104

 920319 Updated with prologue edited 891025 by G. Shaw for manual.
 920331 Reformatted references section. (FNF)
 930706 Corrected C***CATEGORY line. (FNF)
 930930 Converted old UNICOS names to S- or I-names. (DBP)
 931005 Augmented list of equivalent routines, made sure that all
 variables are declared, and improved comments. (FNF)
 931026 Minor changes to reduce single/double differences. (FNF)
 951106 Added special treatment for NTERMS > NDATA. (FNF)
 ***END PROLOGUE SFITPO

PMATH Reference Manual - 105

SLSODE

 SUBROUTINE SLSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
 + ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)
 ***BEGIN PROLOGUE SLSODE
 ***PURPOSE Livermore solver for ordinary differential equations.
 Solves the initial-value problem for stiff or nonstiff
 systems of first-order ODE's,
 dy/dt = f(t,y), or, in component form,
 dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(N)), i=1,...,N.
 ***LIBRARY PMATH (ODEPACK)
 ***CATEGORY I1A1B, I1A2
 ***TYPE SINGLE PRECISION (SLSODE-S, DLSODE-D, LSODE8-8)
 ***KEYWORDS ORDINARY DIFFERENTIAL EQUATIONS, INITIAL VALUE PROBLEM,
 STIFF, NONSTIFF
 ***AUTHOR Hindmarsh, Alan C., (LLNL)
 Center for Computational Sciences and Engrg., L-316
 Lawrence Livermore National Laboratory
 Livermore, CA 94550.
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine LSODE.)

 NOTE: The SLSODE solver is not re-entrant, and so is usable on
 the Cray multi-processor machines only if it is not used
 in a multi-tasking environment.
 If re-entrancy is required, use NLSODE instead.

 The formats of the SLSODE and NLSODE writeups differ from
 those of the other MATHLIB routines.

 The "Usage" and "Arguments" sections treat only a subset of
 available options, in condensed fashion. The options
 covered and the information supplied will support most
 standard uses of SLSODE.

 For more sophisticated uses, full details on all options are
 given in the concluding section, headed "Long Description."
 A synopsis of the SLSODE Long Description is provided at the
 beginning of that section; general topics covered are:
 - Elements of the call sequence; optional input and output
 - Optional supplemental routines in the SLSODE package
 - internal COMMON block

 *Usage:
 Communication between the user and the SLSODE package, for normal
 situations, is summarized here. This summary describes a subset
 of the available options. See "Long Description" for complete
 details, including optional communication, nonstandard options,
 and instructions for special situations.

 A sample program is given in the "Examples" section.

 Refer to the argument descriptions for the definitions of the
 quantities that appear in the following sample declarations.

 For MF = 10,
 PARAMETER (LRW = 20 + 16*NEQ, LIW = 20)
 For MF = 21 or 22,

PMATH Reference Manual - 106

 PARAMETER (LRW = 22 + 9*NEQ + NEQ**2, LIW = 20 + NEQ)
 For MF = 24 or 25,
 PARAMETER (LRW = 22 + 10*NEQ + (2*ML+MU)*NEQ,
 * LIW = 20 + NEQ)

 EXTERNAL F, JAC
 INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK(LIW),
 * LIW, MF
 REAL Y(NEQ), T, TOUT, RTOL, ATOL(ntol), RWORK(LRW)

 CALL SLSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
 * ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)

 *Arguments:
 F :EXT Name of subroutine for right-hand-side vector f.
 This name must be declared EXTERNAL in calling
 program. The form of F must be:

 SUBROUTINE F (NEQ, T, Y, YDOT)
 INTEGER NEQ
 REAL T, Y(NEQ), YDOT(NEQ)

 The inputs are NEQ, T, Y. F is to set

 YDOT(i) = f(i,T,Y(1),Y(2),...,Y(NEQ)),
 i = 1, ..., NEQ .

 NEQ :IN Number of first-order ODE's.

 Y :INOUT Array of values of the y(t) vector, of length NEQ.
 Input: For the first call, Y should contain the
 values of y(t) at t = T. (Y is an input
 variable only if ISTATE = 1.)
 Output: On return, Y will contain the values at the
 new t-value.

 T :INOUT Value of the independent variable. On return it
 will be the current value of t (normally TOUT).

 TOUT :IN Next point where output is desired (.NE. T).

 ITOL :IN 1 or 2 according as ATOL (below) is a scalar or
 an array.

 RTOL :IN Relative tolerance parameter (scalar).

 ATOL :IN Absolute tolerance parameter (scalar or array).
 If ITOL = 1, ATOL need not be dimensioned.
 If ITOL = 2, ATOL must be dimensioned at least NEQ.

 The estimated local error in Y(i) will be controlled
 so as to be roughly less (in magnitude) than

 EWT(i) = RTOL*ABS(Y(i)) + ATOL if ITOL = 1, or
 EWT(i) = RTOL*ABS(Y(i)) + ATOL(i) if ITOL = 2.

 Thus the local error test passes if, in each
 component, either the absolute error is less than
 ATOL (or ATOL(i)), or the relative error is less
 than RTOL.

PMATH Reference Manual - 107

 Use RTOL = 0.0 for pure absolute error control, and
 use ATOL = 0.0 (or ATOL(i) = 0.0) for pure relative
 error control. Caution: Actual (global) errors may
 exceed these local tolerances, so choose them
 conservatively.

 ITASK :IN Flag indicating the task SLSODE is to perform.
 Use ITASK = 1 for normal computation of output
 values of y at t = TOUT.

 ISTATE:INOUT Index used for input and output to specify the state
 of the calculation.
 Input:
 1 This is the first call for a problem.
 2 This is a subsequent call.
 Output:
 2 SLSODE was successful (otherwise, negative).
 Note that ISTATE need not be modified after a
 successful return.
 -1 Excess work done on this call (perhaps wrong
 MF).
 -2 Excess accuracy requested (tolerances too
 small).
 -3 Illegal input detected (see printed message).
 -4 Repeated error test failures (check all
 inputs).
 -5 Repeated convergence failures (perhaps bad
 Jacobian supplied or wrong choice of MF or
 tolerances).
 -6 Error weight became zero during problem
 (solution component i vanished, and ATOL or
 ATOL(i) = 0.).

 IOPT :IN Flag indicating whether optional inputs are used:
 0 No.
 1 Yes. (See "Optional inputs" under "Long
 Description," Part 1.)

 RWORK :WORK Real work array of length at least:
 20 + 16*NEQ for MF = 10,
 22 + 9*NEQ + NEQ**2 for MF = 21 or 22,
 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25.

 LRW :IN Declared length of RWORK (in user's DIMENSION
 statement).

 IWORK :WORK Integer work array of length at least:
 20 for MF = 10,
 20 + NEQ for MF = 21, 22, 24, or 25.

 If MF = 24 or 25, input in IWORK(1),IWORK(2) the
 lower and upper Jacobian half-bandwidths ML,MU.

 On return, IWORK contains information that may be
 of interest to the user:

 Name Location Meaning
 ----- --------- ---
 NST IWORK(11) Number of steps taken for the problem so

PMATH Reference Manual - 108

 far.
 NFE IWORK(12) Number of f evaluations for the problem
 so far.
 NJE IWORK(13) Number of Jacobian evaluations (and of
 matrix LU decompositions) for the problem
 so far.
 NQU IWORK(14) Method order last used (successfully).
 LENRW IWORK(17) Length of RWORK actually required. This
 is defined on normal returns and on an
 illegal input return for insufficient
 storage.
 LENIW IWORK(18) Length of IWORK actually required. This
 is defined on normal returns and on an
 illegal input return for insufficient
 storage.

 LIW :IN Declared length of IWORK (in user's DIMENSION
 statement).

 JAC :EXT Name of subroutine for Jacobian matrix (MF =
 21 or 24). If used, this name must be declared
 EXTERNAL in calling program. If not used, pass a
 dummy name. The form of JAC must be:

 SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
 INTEGER NEQ, ML, MU, NROWPD
 REAL T, Y(NEQ), PD(NROWPD,NEQ)

 See item c, under "Description" below for more
 information about JAC.

 MF :IN Method flag. Standard values are:
 10 Nonstiff (Adams) method, no Jacobian used.
 21 Stiff (BDF) method, user-supplied full Jacobian.
 22 Stiff method, internally generated full
 Jacobian.
 24 Stiff method, user-supplied banded Jacobian.
 25 Stiff method, internally generated banded
 Jacobian.

 *Description:
 SLSODE solves the initial value problem for stiff or nonstiff
 systems of first-order ODE's,

 dy/dt = f(t,y) ,

 or, in component form,

 dy(i)/dt = f(i) = f(i,t,y(1),y(2),...,y(NEQ))
 (i = 1, ..., NEQ) .

 SLSODE is a package based on the GEAR and GEARB packages, and on
 the October 23, 1978, version of the tentative ODEPACK user
 interface standard, with minor modifications.

 The steps in solving such a problem are as follows.

 a. First write a subroutine of the form

 SUBROUTINE F (NEQ, T, Y, YDOT)
PMATH Reference Manual - 109

 INTEGER NEQ
 REAL T, Y(NEQ), YDOT(NEQ)

 which supplies the vector function f by loading YDOT(i) with
 f(i).

 b. Next determine (or guess) whether or not the problem is stiff.
 Stiffness occurs when the Jacobian matrix df/dy has an
 eigenvalue whose real part is negative and large in magnitude
 compared to the reciprocal of the t span of interest. If the
 problem is nonstiff, use method flag MF = 10. If it is stiff,
 there are four standard choices for MF, and SLSODE requires the
 Jacobian matrix in some form. This matrix is regarded either
 as full (MF = 21 or 22), or banded (MF = 24 or 25). In the
 banded case, SLSODE requires two half-bandwidth parameters ML
 and MU. These are, respectively, the widths of the lower and
 upper parts of the band, excluding the main diagonal. Thus the
 band consists of the locations (i,j) with

 i - ML <= j <= i + MU ,

 and the full bandwidth is ML + MU + 1 .

 c. If the problem is stiff, you are encouraged to supply the
 Jacobian directly (MF = 21 or 24), but if this is not feasible,
 SLSODE will compute it internally by difference quotients (MF =
 22 or 25). If you are supplying the Jacobian, write a
 subroutine of the form

 SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
 INTEGER NEQ, ML, MU, NRWOPD
 REAL Y, Y(NEQ), PD(NROWPD,NEQ)

 which provides df/dy by loading PD as follows:
 - For a full Jacobian (MF = 21), load PD(i,j) with df(i)/dy(j),
 the partial derivative of f(i) with respect to y(j). (Ignore
 the ML and MU arguments in this case.)
 - For a banded Jacobian (MF = 24), load PD(i-j+MU+1,j) with
 df(i)/dy(j); i.e., load the diagonal lines of df/dy into the
 rows of PD from the top down.
 - In either case, only nonzero elements need be loaded.

 d. Write a main program that calls subroutine SLSODE once for each
 point at which answers are desired. This should also provide
 for possible use of logical unit 6 for output of error messages
 by SLSODE.

 Before the first call to SLSODE, set ISTATE = 1, set Y and T to
 the initial values, and set TOUT to the first output point. To
 continue the integration after a successful return, simply
 reset TOUT and call SLSODE again. No other parameters need be
 reset.

 *Examples:
 The following is a simple example problem, with the coding needed
 for its solution by SLSODE. The problem is from chemical kinetics,
 and consists of the following three rate equations:

 dy1/dt = -.04*y1 + 1.E4*y2*y3
 dy2/dt = .04*y1 - 1.E4*y2*y3 - 3.E7*y2**2

PMATH Reference Manual - 110

 dy3/dt = 3.E7*y2**2

 on the interval from t = 0.0 to t = 4.E10, with initial conditions
 y1 = 1.0, y2 = y3 = 0. The problem is stiff.

 The following coding solves this problem with SLSODE, using
 MF = 21 and printing results at t = .4, 4., ..., 4.E10. It uses
 ITOL = 2 and ATOL much smaller for y2 than for y1 or y3 because y2
 has much smaller values. At the end of the run, statistical
 quantities of interest are printed.

 EXTERNAL FEX, JEX
 INTEGER IOPT, IOUT, ISTATE, ITASK, ITOL, IWORK(23), LIW, LRW,
 * MF, NEQ
 REAL ATOL(3), RTOL, RWORK(58), T, TOUT, Y(3)
 NEQ = 3
 Y(1) = 1.
 Y(2) = 0.
 Y(3) = 0.
 T = 0.
 TOUT = .4
 ITOL = 2
 RTOL = 1.E-4
 ATOL(1) = 1.E-6
 ATOL(2) = 1.E-10
 ATOL(3) = 1.E-6
 ITASK = 1
 ISTATE = 1
 IOPT = 0
 LRW = 58
 LIW = 23
 MF = 21
 DO 40 IOUT = 1,12
 CALL SLSODE (FEX, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,
 * ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JEX, MF)
 WRITE(6,20) T, Y(1), Y(2), Y(3)
 20 FORMAT(' At t =',E12.4,' y =',3E14.6)
 IF (ISTATE .LT. 0) GO TO 80
 40 TOUT = TOUT*10.
 WRITE(6,60) IWORK(11), IWORK(12), IWORK(13)
 60 FORMAT(/' No. steps =',i4,', No. f-s =',i4,', No. J-s =',i4)
 STOP
 80 WRITE(6,90) ISTATE
 90 FORMAT(///' Error halt.. ISTATE =',I3)
 STOP
 END

 SUBROUTINE FEX (NEQ, T, Y, YDOT)
 INTEGER NEQ
 REAL T, Y(3), YDOT(3)
 YDOT(1) = -.04*Y(1) + 1.E4*Y(2)*Y(3)
 YDOT(3) = 3.E7*Y(2)*Y(2)
 YDOT(2) = -YDOT(1) - YDOT(3)
 RETURN
 END

 SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD)
 INTEGER NEQ, ML, MU, NRPD
 REAL T, Y(3), PD(NRPD,3)
 PD(1,1) = -.04

PMATH Reference Manual - 111

 PD(1,2) = 1.E4*Y(3)
 PD(1,3) = 1.E4*Y(2)
 PD(2,1) = .04
 PD(2,3) = -PD(1,3)
 PD(3,2) = 6.E7*Y(2)
 PD(2,2) = -PD(1,2) - PD(3,2)
 RETURN
 END

 The output from this program (on a Cray-1 in single precision)
 is as follows.

 At t = 4.0000e-01 y = 9.851726e-01 3.386406e-05 1.479357e-02
 At t = 4.0000e+00 y = 9.055142e-01 2.240418e-05 9.446344e-02
 At t = 4.0000e+01 y = 7.158050e-01 9.184616e-06 2.841858e-01
 At t = 4.0000e+02 y = 4.504846e-01 3.222434e-06 5.495122e-01
 At t = 4.0000e+03 y = 1.831701e-01 8.940379e-07 8.168290e-01
 At t = 4.0000e+04 y = 3.897016e-02 1.621193e-07 9.610297e-01
 At t = 4.0000e+05 y = 4.935213e-03 1.983756e-08 9.950648e-01
 At t = 4.0000e+06 y = 5.159269e-04 2.064759e-09 9.994841e-01
 At t = 4.0000e+07 y = 5.306413e-05 2.122677e-10 9.999469e-01
 At t = 4.0000e+08 y = 5.494530e-06 2.197825e-11 9.999945e-01
 At t = 4.0000e+09 y = 5.129458e-07 2.051784e-12 9.999995e-01
 At t = 4.0000e+10 y = -7.170603e-08 -2.868241e-13 1.000000e+00

 No. steps = 330, No. f-s = 405, No. J-s = 69

 *Accuracy:
 The accuracy of the solution depends on the choice of tolerances
 RTOL and ATOL. Actual (global) errors may exceed these local
 tolerances, so choose them conservatively.

 *Cautions:
 The work arrays should not be altered between calls to SLSODE for
 the same problem, except possibly for the conditional and optional
 inputs.

 *Portability:
 Since NEQ is dimensioned inside SLSODE, some compilers may object
 to a call to SLSODE with NEQ a scalar variable. In this event,
 use DIMENSION NEQ(1). Similar remarks apply to RTOL and ATOL.

 Note to Cray users:
 For maximum efficiency, use the CFT77 compiler. Appropriate
 compiler optimization directives have been inserted for CFT77
 (but not CIVIC).

 NOTICE: If moving the SLSODE source code to other systems,
 contact the author for notes on nonstandard Fortran usage,
 COMMON block, and other installation details.

 *Reference:
 Alan C. Hindmarsh, "ODEPACK, a systematized collection of ODE
 solvers," in Scientific Computing, R. S. Stepleman, et al., Eds.
 (North-Holland, Amsterdam, 1983), pp. 55-64.

 *Long Description:
 The following complete description of the user interface to
 SLSODE consists of four parts:

PMATH Reference Manual - 112

 1. The call sequence to subroutine SLSODE, which is a driver
 routine for the solver. This includes descriptions of both
 the call sequence arguments and user-supplied routines.
 Following these descriptions is a description of optional
 inputs available through the call sequence, and then a
 description of optional outputs in the work arrays.

 2. Descriptions of other routines in the SLSODE package that may
 be (optionally) called by the user. These provide the ability
 to alter error message handling, save and restore the internal
 COMMON, and obtain specified derivatives of the solution y(t).

 3. Descriptions of COMMON block to be declared in overlay or
 similar environments, or to be saved when doing an interrupt
 of the problem and continued solution later.

 4. Description of two routines in the SLSODE package, either of
 which the user may replace with his own version, if desired.
 These relate to the measurement of errors.

 Part 1. Call Sequence

 Arguments

 The call sequence parameters used for input only are

 F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, MF,

 and those used for both input and output are

 Y, T, ISTATE.

 The work arrays RWORK and IWORK are also used for conditional and
 optional inputs and optional outputs. (The term output here
 refers to the return from subroutine SLSODE to the user's calling
 program.)

 The legality of input parameters will be thoroughly checked on the
 initial call for the problem, but not checked thereafter unless a
 change in input parameters is flagged by ISTATE = 3 on input.

 The descriptions of the call arguments are as follows.

 F The name of the user-supplied subroutine defining the ODE
 system. The system must be put in the first-order form
 dy/dt = f(t,y), where f is a vector-valued function of
 the scalar t and the vector y. Subroutine F is to compute
 the function f. It is to have the form

 SUBROUTINE F (NEQ, T, Y, YDOT)
 REAL Y(NEQ), YDOT(NEQ)

 where NEQ, T, and Y are input, and the array YDOT =
 f(T,Y) is output. Y and YDOT are arrays of length NEQ.
 Subroutine F should not alter Y(1),...,Y(NEQ). F must be
 declared EXTERNAL in the calling program.

 Subroutine F may access user-defined quantities in
PMATH Reference Manual - 113

 NEQ(2),... and/or in Y(NEQ(1)+1),..., if NEQ is an array
 (dimensioned in F) and/or Y has length exceeding NEQ(1).
 See the descriptions of NEQ and Y below.

 If quantities computed in the F routine are needed
 externally to SLSODE, an extra call to F should be made
 for this purpose, for consistent and accurate results.
 If only the derivative dy/dt is needed, use SINTDY
 instead.

 NEQ The size of the ODE system (number of first-order
 ordinary differential equations). Used only for input.
 NEQ may be decreased, but not increased, during the
 problem. If NEQ is decreased (with ISTATE = 3 on input),
 the remaining components of Y should be left undisturbed,
 if these are to be accessed in F and/or JAC.

 Normally, NEQ is a scalar, and it is generally referred
 to as a scalar in this user interface description.
 However, NEQ may be an array, with NEQ(1) set to the
 system size. (The SLSODE package accesses only NEQ(1).)
 In either case, this parameter is passed as the NEQ
 argument in all calls to F and JAC. Hence, if it is an
 array, locations NEQ(2),... may be used to store other
 integer data and pass it to F and/or JAC. Subroutines
 F and/or JAC must include NEQ in a DIMENSION statement
 in that case.

 Y A real array for the vector of dependent variables, of
 length NEQ or more. Used for both input and output on
 the first call (ISTATE = 1), and only for output on
 other calls. On the first call, Y must contain the
 vector of initial values. On output, Y contains the
 computed solution vector, evaluated at T. If desired,
 the Y array may be used for other purposes between
 calls to the solver.

 This array is passed as the Y argument in all calls to F
 and JAC. Hence its length may exceed NEQ, and locations
 Y(NEQ+1),... may be used to store other real data and
 pass it to F and/or JAC. (The SLSODE package accesses
 only Y(1),...,Y(NEQ).)

 T The independent variable. On input, T is used only on
 the first call, as the initial point of the integration.
 On output, after each call, T is the value at which a
 computed solution Y is evaluated (usually the same as
 TOUT). On an error return, T is the farthest point
 reached.

 TOUT The next value of T at which a computed solution is
 desired. Used only for input.

 When starting the problem (ISTATE = 1), TOUT may be equal
 to T for one call, then should not equal T for the next
 call. For the initial T, an input value of TOUT .NE. T
 is used in order to determine the direction of the
 integration (i.e., the algebraic sign of the step sizes)
 and the rough scale of the problem. Integration in
 either direction (forward or backward in T) is permitted.

PMATH Reference Manual - 114

 If ITASK = 2 or 5 (one-step modes), TOUT is ignored
 after the first call (i.e., the first call with
 TOUT .NE. T). Otherwise, TOUT is required on every call.

 If ITASK = 1, 3, or 4, the values of TOUT need not be
 monotone, but a value of TOUT which backs up is limited
 to the current internal T interval, whose endpoints are
 TCUR - HU and TCUR. (See "Optional Outputs" below for
 TCUR and HU.)

 ITOL An indicator for the type of error control. See
 description below under ATOL. Used only for input.

 RTOL A relative error tolerance parameter, either a scalar or
 an array of length NEQ. See description below under
 ATOL. Input only.

 ATOL An absolute error tolerance parameter, either a scalar or
 an array of length NEQ. Input only.

 The input parameters ITOL, RTOL, and ATOL determine the
 error control performed by the solver. The solver will
 control the vector e = (e(i)) of estimated local errors
 in Y, according to an inequality of the form

 rms-norm of (e(i)/EWT(i)) <= 1,

 where

 EWT(i) = RTOL(i)*ABS(Y(i)) + ATOL(i),

 and the rms-norm (root-mean-square norm) here is

 rms-norm(v) = SQRT(sum v(i)**2 / NEQ).

 Here EWT = (EWT(i)) is a vector of weights which must
 always be positive, and the values of RTOL and ATOL
 should all be nonnegative. The following table gives the
 types (scalar/array) of RTOL and ATOL, and the
 corresponding form of EWT(i).

 ITOL RTOL ATOL EWT(i)
 ---- ------ ------ -----------------------------
 1 scalar scalar RTOL*ABS(Y(i)) + ATOL
 2 scalar array RTOL*ABS(Y(i)) + ATOL(i)
 3 array scalar RTOL(i)*ABS(Y(i)) + ATOL
 4 array array RTOL(i)*ABS(Y(i)) + ATOL(i)

 When either of these parameters is a scalar, it need not
 be dimensioned in the user's calling program.

 If none of the above choices (with ITOL, RTOL, and ATOL
 fixed throughout the problem) is suitable, more general
 error controls can be obtained by substituting
 user-supplied routines for the setting of EWT and/or for
 the norm calculation. See Part 4 below.

 If global errors are to be estimated by making a repeated
PMATH Reference Manual - 115

 run on the same problem with smaller tolerances, then all
 components of RTOL and ATOL (i.e., of EWT) should be
 scaled down uniformly.

 ITASK An index specifying the task to be performed. Input
 only. ITASK has the following values and meanings:
 1 Normal computation of output values of y(t) at
 t = TOUT (by overshooting and interpolating).
 2 Take one step only and return.
 3 Stop at the first internal mesh point at or beyond
 t = TOUT and return.
 4 Normal computation of output values of y(t) at
 t = TOUT but without overshooting t = TCRIT. TCRIT
 must be input as RWORK(1). TCRIT may be equal to or
 beyond TOUT, but not behind it in the direction of
 integration. This option is useful if the problem
 has a singularity at or beyond t = TCRIT.
 5 Take one step, without passing TCRIT, and return.
 TCRIT must be input as RWORK(1).

 Note: If ITASK = 4 or 5 and the solver reaches TCRIT
 (within roundoff), it will return T = TCRIT (exactly) to
 indicate this (unless ITASK = 4 and TOUT comes before
 TCRIT, in which case answers at T = TOUT are returned
 first).

 ISTATE An index used for input and output to specify the state
 of the calculation.

 On input, the values of ISTATE are as follows:
 1 This is the first call for the problem
 (initializations will be done). See "Note" below.
 2 This is not the first call, and the calculation is to
 continue normally, with no change in any input
 parameters except possibly TOUT and ITASK. (If ITOL,
 RTOL, and/or ATOL are changed between calls with
 ISTATE = 2, the new values will be used but not
 tested for legality.)
 3 This is not the first call, and the calculation is to
 continue normally, but with a change in input
 parameters other than TOUT and ITASK. Changes are
 allowed in NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF,
 ML, MU, and any of the optional inputs except H0.
 (See IWORK description for ML and MU.)

 Note: A preliminary call with TOUT = T is not counted as
 a first call here, as no initialization or checking of
 input is done. (Such a call is sometimes useful for the
 purpose of outputting the initial conditions.) Thus the
 first call for which TOUT .NE. T requires ISTATE = 1 on
 input.

 On output, ISTATE has the following values and meanings:
 1 Nothing was done, as TOUT was equal to T with
 ISTATE = 1 on input.
 2 The integration was performed successfully.
 -1 An excessive amount of work (more than MXSTEP steps)
 was done on this call, before completing the
 requested task, but the integration was otherwise
 successful as far as T. (MXSTEP is an optional input

PMATH Reference Manual - 116

 and is normally 500.) To continue, the user may
 simply reset ISTATE to a value >1 and call again (the
 excess work step counter will be reset to 0). In
 addition, the user may increase MXSTEP to avoid this
 error return; see "Optional Inputs" below.
 -2 Too much accuracy was requested for the precision of
 the machine being used. This was detected before
 completing the requested task, but the integration
 was successful as far as T. To continue, the
 tolerance parameters must be reset, and ISTATE must
 be set to 3. The optional output TOLSF may be used
 for this purpose. (Note: If this condition is
 detected before taking any steps, then an illegal
 input return (ISTATE = -3) occurs instead.)
 -3 Illegal input was detected, before taking any
 integration steps. See written message for details.
 (Note: If the solver detects an infinite loop of
 calls to the solver with illegal input, it will cause
 the run to stop.)
 -4 There were repeated error-test failures on one
 attempted step, before completing the requested task,
 but the integration was successful as far as T. The
 problem may have a singularity, or the input may be
 inappropriate.
 -5 There were repeated convergence-test failures on one
 attempted step, before completing the requested task,
 but the integration was successful as far as T. This
 may be caused by an inaccurate Jacobian matrix, if
 one is being used.
 -6 EWT(i) became zero for some i during the integration.
 Pure relative error control (ATOL(i)=0.0) was
 requested on a variable which has now vanished. The
 integration was successful as far as T.

 Note: Since the normal output value of ISTATE is 2, it
 does not need to be reset for normal continuation. Also,
 since a negative input value of ISTATE will be regarded
 as illegal, a negative output value requires the user to
 change it, and possibly other inputs, before calling the
 solver again.

 IOPT An integer flag to specify whether any optional inputs
 are being used on this call. Input only. The optional
 inputs are listed under a separate heading below.
 0 No optional inputs are being used. Default values
 will be used in all cases.
 1 One or more optional inputs are being used.

 RWORK A real working array (single precision). The length of
 RWORK must be at least

 20 + NYH*(MAXORD + 1) + 3*NEQ + LWM

 where
 NYH = the initial value of NEQ,
 MAXORD = 12 (if METH = 1) or 5 (if METH = 2) (unless a
 smaller value is given as an optional input),
 LWM = 0 if MITER = 0,
 LWM = NEQ**2 + 2 if MITER = 1 or 2,
 LWM = NEQ + 2 if MITER = 3, and

PMATH Reference Manual - 117

 LWM = (2*ML + MU + 1)*NEQ + 2
 if MITER = 4 or 5.
 (See the MF description below for METH and MITER.)

 Thus if MAXORD has its default value and NEQ is constant,
 this length is:
 20 + 16*NEQ for MF = 10,
 22 + 16*NEQ + NEQ**2 for MF = 11 or 12,
 22 + 17*NEQ for MF = 13,
 22 + 17*NEQ + (2*ML + MU)*NEQ for MF = 14 or 15,
 20 + 9*NEQ for MF = 20,
 22 + 9*NEQ + NEQ**2 for MF = 21 or 22,
 22 + 10*NEQ for MF = 23,
 22 + 10*NEQ + (2*ML + MU)*NEQ for MF = 24 or 25.

 The first 20 words of RWORK are reserved for conditional
 and optional inputs and optional outputs.

 The following word in RWORK is a conditional input:
 RWORK(1) = TCRIT, the critical value of t which the
 solver is not to overshoot. Required if ITASK
 is 4 or 5, and ignored otherwise. See ITASK.

 LRW The length of the array RWORK, as declared by the user.
 (This will be checked by the solver.)

 IWORK An integer work array. Its length must be at least
 20 if MITER = 0 or 3 (MF = 10, 13, 20, 23), or
 20 + NEQ otherwise (MF = 11, 12, 14, 15, 21, 22, 24, 25).
 (See the MF description below for MITER.) The first few
 words of IWORK are used for conditional and optional
 inputs and optional outputs.

 The following two words in IWORK are conditional inputs:
 IWORK(1) = ML These are the lower and upper half-
 IWORK(2) = MU bandwidths, respectively, of the banded
 Jacobian, excluding the main diagonal.
 The band is defined by the matrix locations
 (i,j) with i - ML <= j <= i + MU. ML and MU
 must satisfy 0 <= ML,MU <= NEQ - 1. These are
 required if MITER is 4 or 5, and ignored
 otherwise. ML and MU may in fact be the band
 parameters for a matrix to which df/dy is only
 approximately equal.

 LIW The length of the array IWORK, as declared by the user.
 (This will be checked by the solver.)

 Note: The work arrays must not be altered between calls to SLSODE
 for the same problem, except possibly for the conditional and
 optional inputs, and except for the last 3*NEQ words of RWORK.
 The latter space is used for internal scratch space, and so is
 available for use by the user outside SLSODE between calls, if
 desired (but not for use by F or JAC).

 JAC The name of the user-supplied routine (MITER = 1 or 4) to
 compute the Jacobian matrix, df/dy, as a function of the
 scalar t and the vector y. (See the MF description below
 for MITER.) It is to have the form

PMATH Reference Manual - 118

 SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
 REAL Y(NEQ), PD(NROWPD,NEQ)

 where NEQ, T, Y, ML, MU, and NROWPD are input and the
 array PD is to be loaded with partial derivatives
 (elements of the Jacobian matrix) on output. PD must be
 given a first dimension of NROWPD. T and Y have the same
 meaning as in subroutine F.

 In the full matrix case (MITER = 1), ML and MU are
 ignored, and the Jacobian is to be loaded into PD in
 columnwise manner, with df(i)/dy(j) loaded into PD(i,j).

 In the band matrix case (MITER = 4), the elements within
 the band are to be loaded into PD in columnwise manner,
 with diagonal lines of df/dy loaded into the rows of PD.
 Thus df(i)/dy(j) is to be loaded into PD(i-j+MU+1,j). ML
 and MU are the half-bandwidth parameters (see IWORK).
 The locations in PD in the two triangular areas which
 correspond to nonexistent matrix elements can be ignored
 or loaded arbitrarily, as they are overwritten by SLSODE.

 JAC need not provide df/dy exactly. A crude approximation
 (possibly with a smaller bandwidth) will do.

 In either case, PD is preset to zero by the solver, so
 that only the nonzero elements need be loaded by JAC.
 Each call to JAC is preceded by a call to F with the same
 arguments NEQ, T, and Y. Thus to gain some efficiency,
 intermediate quantities shared by both calculations may
 be saved in a user COMMON block by F and not recomputed
 by JAC, if desired. Also, JAC may alter the Y array, if
 desired. JAC must be declared EXTERNAL in the calling
 program.

 Subroutine JAC may access user-defined quantities in
 NEQ(2),... and/or in Y(NEQ(1)+1),... if NEQ is an array
 (dimensioned in JAC) and/or Y has length exceeding
 NEQ(1). See the descriptions of NEQ and Y above.

 MF The method flag. Used only for input. The legal values
 of MF are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24,
 and 25. MF has decimal digits METH and MITER:
 MF = 10*METH + MITER .

 METH indicates the basic linear multistep method:
 1 Implicit Adams method.
 2 Method based on backward differentiation formulas
 (BDF's).

 MITER indicates the corrector iteration method:
 0 Functional iteration (no Jacobian matrix is
 involved).
 1 Chord iteration with a user-supplied full (NEQ by
 NEQ) Jacobian.
 2 Chord iteration with an internally generated
 (difference quotient) full Jacobian (using NEQ
 extra calls to F per df/dy value).
 3 Chord iteration with an internally generated
 diagonal Jacobian approximation (using one extra call

PMATH Reference Manual - 119

 to F per df/dy evaluation).
 4 Chord iteration with a user-supplied banded Jacobian.
 5 Chord iteration with an internally generated banded
 Jacobian (using ML + MU + 1 extra calls to F per
 df/dy evaluation).

 If MITER = 1 or 4, the user must supply a subroutine JAC
 (the name is arbitrary) as described above under JAC.
 For other values of MITER, a dummy argument can be used.

 Optional Inputs

 The following is a list of the optional inputs provided for in the
 call sequence. (See also Part 2.) For each such input variable,
 this table lists its name as used in this documentation, its
 location in the call sequence, its meaning, and the default value.
 The use of any of these inputs requires IOPT = 1, and in that case
 all of these inputs are examined. A value of zero for any of
 these optional inputs will cause the default value to be used.
 Thus to use a subset of the optional inputs, simply preload
 locations 5 to 10 in RWORK and IWORK to 0.0 and 0 respectively,
 and then set those of interest to nonzero values.

 Name Location Meaning and default value
 ------ --------- ---
 H0 RWORK(5) Step size to be attempted on the first step.
 The default value is determined by the solver.
 HMAX RWORK(6) Maximum absolute step size allowed. The
 default value is infinite.
 HMIN RWORK(7) Minimum absolute step size allowed. The
 default value is 0. (This lower bound is not
 enforced on the final step before reaching
 TCRIT when ITASK = 4 or 5.)
 MAXORD IWORK(5) Maximum order to be allowed. The default value
 is 12 if METH = 1, and 5 if METH = 2. (See the
 MF description above for METH.) If MAXORD
 exceeds the default value, it will be reduced
 to the default value. If MAXORD is changed
 during the problem, it may cause the current
 order to be reduced.
 MXSTEP IWORK(6) Maximum number of (internally defined) steps
 allowed during one call to the solver. The
 default value is 500.
 MXHNIL IWORK(7) Maximum number of messages printed (per
 problem) warning that T + H = T on a step
 (H = step size). This must be positive to
 result in a nondefault value. The default
 value is 10.

 Optional Outputs

 As optional additional output from SLSODE, the variables listed
 below are quantities related to the performance of SLSODE which
 are available to the user. These are communicated by way of the
 work arrays, but also have internal mnemonic names as shown.
 Except where stated otherwise, all of these outputs are defined on
 any successful return from SLSODE, and on any return with ISTATE =
 -1, -2, -4, -5, or -6. On an illegal input return (ISTATE = -3),
 they will be unchanged from their existing values (if any), except
 possibly for TOLSF, LENRW, and LENIW. On any error return,

PMATH Reference Manual - 120

 outputs relevant to the error will be defined, as noted below.

 Name Location Meaning
 ----- --------- --
 HU RWORK(11) Step size in t last used (successfully).
 HCUR RWORK(12) Step size to be attempted on the next step.
 TCUR RWORK(13) Current value of the independent variable which
 the solver has actually reached, i.e., the
 current internal mesh point in t. On output,
 TCUR will always be at least as far as the
 argument T, but may be farther (if interpolation
 was done).
 TOLSF RWORK(14) Tolerance scale factor, greater than 1.0,
 computed when a request for too much accuracy
 was detected (ISTATE = -3 if detected at the
 start of the problem, ISTATE = -2 otherwise).
 If ITOL is left unaltered but RTOL and ATOL are
 uniformly scaled up by a factor of TOLSF for the
 next call, then the solver is deemed likely to
 succeed. (The user may also ignore TOLSF and
 alter the tolerance parameters in any other way
 appropriate.)
 NST IWORK(11) Number of steps taken for the problem so far.
 NFE IWORK(12) Number of F evaluations for the problem so far.
 NJE IWORK(13) Number of Jacobian evaluations (and of matrix LU
 decompositions) for the problem so far.
 NQU IWORK(14) Method order last used (successfully).
 NQCUR IWORK(15) Order to be attempted on the next step.
 IMXER IWORK(16) Index of the component of largest magnitude in
 the weighted local error vector (e(i)/EWT(i)),
 on an error return with ISTATE = -4 or -5.
 LENRW IWORK(17) Length of RWORK actually required. This is
 defined on normal returns and on an illegal
 input return for insufficient storage.
 LENIW IWORK(18) Length of IWORK actually required. This is
 defined on normal returns and on an illegal
 input return for insufficient storage.

 The following two arrays are segments of the RWORK array which may
 also be of interest to the user as optional outputs. For each
 array, the table below gives its internal name, its base address
 in RWORK, and its description.

 Name Base address Description
 ---- ------------ --
 YH 21 The Nordsieck history array, of size NYH by
 (NQCUR + 1), where NYH is the initial value of
 NEQ. For j = 0,1,...,NQCUR, column j + 1 of
 YH contains HCUR**j/factorial(j) times the jth
 derivative of the interpolating polynomial
 currently representing the solution, evaluated
 at t = TCUR.
 ACOR LENRW-NEQ+1 Array of size NEQ used for the accumulated
 corrections on each step, scaled on output to
 represent the estimated local error in Y on
 the last step. This is the vector e in the
 description of the error control. It is
 defined only on successful return from SLSODE.

PMATH Reference Manual - 121

 Part 2. Other Callable Routines

 The following are optional calls which the user may make to gain
 additional capabilities in conjunction with SLSODE.

 Form of call Function
 ------------------------ --
 CALL XSETUN(LUN) Set the logical unit number, LUN, for
 output of messages from SLSODE, if the
 default is not desired. The default
 value of LUN is 6. This call may be made
 at any time and will take effect
 immediately.
 CALL XSETF(MFLAG) Set a flag to control the printing of
 messages by SLSODE. MFLAG = 0 means do
 not print. (Danger: this risks losing
 valuable information.) MFLAG = 1 means
 print (the default). This call may be
 made at any time and will take effect
 immediately.
 CALL SSRCOM(RSAV,ISAV,JOB) Saves and restores the contents of the
 internal COMMON blocks used by SLSODE
 (see Part 3 below). RSAV must be a
 real array of length 218 or more, and
 ISAV must be an integer array of length
 37 or more. JOB = 1 means save COMMON
 into RSAV/ISAV. JOB = 2 means restore
 COMMON from same. SSRCOM is useful if
 one is interrupting a run and restarting
 later, or alternating between two or
 more problems solved with SLSODE.
 CALL SINTDY(,,,,,) Provide derivatives of y, of various
 (see below) orders, at a specified point t, if
 desired. It may be called only after a
 successful return from SLSODE. Detailed
 instructions follow.

 Detailed instructions for using SINTDY

 The form of the CALL is:

 CALL SINTDY (T, K, RWORK(21), NYH, DKY, IFLAG)

 The input parameters are:

 T Value of independent variable where answers are
 desired (normally the same as the T last returned by
 SLSODE). For valid results, T must lie between
 TCUR - HU and TCUR. (See "Optional Outputs" above
 for TCUR and HU.)
 K Integer order of the derivative desired. K must
 satisfy 0 <= K <= NQCUR, where NQCUR is the current
 order (see "Optional Outputs"). The capability
 corresponding to K = 0, i.e., computing y(t), is
 already provided by SLSODE directly. Since
 NQCUR >= 1, the first derivative dy/dt is always
 available with SINTDY.
 RWORK(21) The base address of the history array YH.
 NYH Column length of YH, equal to the initial value of NEQ.

PMATH Reference Manual - 122

 The output parameters are:

 DKY Real array of length NEQ containing the computed value
 of the Kth derivative of y(t).
 IFLAG Integer flag, returned as 0 if K and T were legal,
 -1 if K was illegal, and -2 if T was illegal.
 On an error return, a message is also written.

 Part 3. Common Blocks

 If SLSODE is to be used in an overlay situation, the user must
 declare, in the primary overlay, the variables in:
 (1) the call sequence to SLSODE,
 (2) the internal COMMON block /SLS001/, of length 255
 (218 single precision words followed by 37 integer words).

 If SLSODE is used on a system in which the contents of internal
 COMMON blocks are not preserved between calls, the user should
 declare the above COMMON block in his main program to insure that
 its contents are preserved.

 If the solution of a given problem by SLSODE is to be interrupted
 and then later continued, as when restarting an interrupted run or
 alternating between two or more problems, the user should save,
 following the return from the last SLSODE call prior to the
 interruption, the contents of the call sequence variables and the
 internal COMMON block, and later restore these values before the
 next SLSODE call for that problem. In addition, if XSETUN and/or
 XSETF was called for non-default handling of error messages, then
 these calls must be repeated. To save and restore the COMMON
 block, use subroutine SSRCOM (see Part 2 above).

 Part 4. Optionally Replaceable Solver Routines

 Below are descriptions of two routines in the SLSODE package which
 relate to the measurement of errors. Either routine can be
 replaced by a user-supplied version, if desired. However, since
 such a replacement may have a major impact on performance, it
 should be done only when absolutely necessary, and only with great
 caution. (Note: The means by which the package version of a
 routine is superseded by the user's version may be system-
 dependent.)

 SEWSET

 The following subroutine is called just before each internal
 integration step, and sets the array of error weights, EWT, as
 described under ITOL/RTOL/ATOL above:

 SUBROUTINE SEWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT)

 where NEQ, ITOL, RTOL, and ATOL are as in the SLSODE call
 sequence, YCUR contains the current dependent variable vector,
 and EWT is the array of weights set by SEWSET.

PMATH Reference Manual - 123

 If the user supplies this subroutine, it must return in EWT(i)
 (i = 1,...,NEQ) a positive quantity suitable for comparing errors
 in Y(i) to. The EWT array returned by SEWSET is passed to the
 SVNORM routine (see below), and also used by SLSODE in the
 computation of the optional output IMXER, the diagonal Jacobian
 approximation, and the increments for difference quotient
 Jacobians.

 In the user-supplied version of SEWSET, it may be desirable to use
 the current values of derivatives of y. Derivatives up to order NQ
 are available from the history array YH, described above under
 optional outputs. In SEWSET, YH is identical to the YCUR array,
 extended to NQ + 1 columns with a column length of NYH and scale
 factors of H**j/factorial(j). On the first call for the problem,
 given by NST = 0, NQ is 1 and H is temporarily set to 1.0. The
 quantities NQ, NYH, H, and NST can be obtained by including in
 SEWSET the statements:

 REAL RLS
 COMMON /SLS001/ RLS(218),ILS(37)
 NQ = ILS(33)
 NYH = ILS(12)
 NST = ILS(34)
 H = RLS(212)
 Thus, for example, the current value of dy/dt can be obtained as
 YCUR(NYH+i)/H (i=1,...,NEQ) (and the division by H is unnecessary
 when NST = 0).

 SVNORM

 SVNORM is a real function routine which computes the weighted
 root-mean-square norm of a vector v:

 d = SVNORM (n, v, w)

 where:
 n = the length of the vector,
 v = real array of length n containing the vector,
 w = real array of length n containing weights,
 d = SQRT((1/n) * sum(v(i)*w(i))**2).

 SVNORM is called with n = NEQ and with w(i) = 1.0/EWT(i), where
 EWT is as set by subroutine SEWSET.

 If the user supplies this function, it should return a nonnegative
 value of SVNORM suitable for use in the error control in SLSODE.
 None of the arguments should be altered by SVNORM. For example, a
 user-supplied SVNORM routine might:
 - Substitute a max-norm of (v(i)*w(i)) for the rms-norm, or
 - Ignore some components of v in the norm, with the effect of
 suppressing the error control on those components of Y.

 ***REFERENCES Alan C. Hindmarsh, "ODEPACK, a systematized collection
 of ODE solvers", in Scientific Computing, R. S.
 Stepleman, et al. (Eds.), (North-Holland, Amsterdam,
 1983), pp. 55-64.
 ***ROUTINES CALLED SEWSET, SINTDY, RUMACH, SSTODE, SVNORM, XERRWV
 ***COMMON BLOCKS SLS001
 ***REVISION HISTORY (YYMMDD)

PMATH Reference Manual - 124

 791129 DATE WRITTEN
 ***END PROLOGUE SLSODE

PMATH Reference Manual - 125

SMAXAF

 REAL FUNCTION SMAXAF (ARRAY, IFIRST, ILAST, ISTRID, IMAX)
 ***BEGIN PROLOGUE SMAXAF
 ***PURPOSE Maximum value in a one-dimensional array.
 ***LIBRARY PMATH
 ***CATEGORY N5A
 ***TYPE SINGLE PRECISION (SMAXAF-S, DMAXAF-D, AMAXF8-8, IMAXAF-I)
 ***KEYWORDS MAXIMUM
 ***AUTHOR Painter, Jeffrey F., (LLNL)
 Revised by:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine AMAXAF.)
 *Usage:
 INTEGER IFIRST, ILAST, ISTRID, IMAX
 REAL ARRAY(n), AMAX, SMAXAF
 AMAX = SMAXAF (ARRAY, IFIRST, ILAST, ISTRID, IMAX)

 *Arguments:
 ARRAY:IN Real array to be searched.
 n, the dimension of the array, must be no less than
 ILAST.

 IFIRST:IN First subscript in the array to be searched.

 ILAST :IN Last subscript in the array to be searched.

 ISTRID:IN Increment (stride) between successive locations that
 are to be searched.

 IMAX :OUT Index of the maximum value in the array, i.e., the
 ordinal position of the value in the array.

 *Function Return Values:
 AMAX : Maximum value in the array.

 *Description:
 SMAXAF finds the maximum value in a one-dimensional real array,
 and returns its index. In case of multiple maxima, the last
 index found is returned.

 *Cautions:
 The array is assumed to be subscripted from 1.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830401 DATE WRITTEN (J. F. Painter)
 931005 Augmented list of equivalent routines. (FNF)
 940421 Corrected category. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE SMAXAF

PMATH Reference Manual - 126

SMEANF

 REAL FUNCTION SMEANF (A, N)
 ***BEGIN PROLOGUE SMEANF
 ***PURPOSE Mean of a one-dimensional real array.
 ***LIBRARY PMATH
 ***CATEGORY L1A
 ***TYPE SINGLE PRECISION (SMEANF-S, DMEANF-D, AMEAN8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, MEAN
 ***AUTHOR Unknown, Name (LLNL/USD/NMG)
 Durst, Mark J. (LLNL/CMRD/SPG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine AMEANF.)
 *Usage:
 INTEGER N
 REAL ANS, A(N)
 ANS = SMEANF (A, N)

 *Arguments:
 A :IN Array of input values.
 N :IN Number of elements in A.

 *Function Return Values:
 ANS The mean of the values in A.

 *Description:
 SMEANF calculates the mean of the N values contained in A.

 *See Also:
 For a vector of means, see SMEANV.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 (The above is the date of LCSD-442,Rev.1 and is undoubtedly
 a significant underestimate of the age of this routine.)
 890223 Added SLATEC/LDOC prologue. (FNF)
 890518 Modified sequence numbers to fit in columns 73-80. (FNF)
 920319 Updated with prologue edited 891025 by G. Shaw for manual.
 930930 Converted old UNICOS names to S- or I-names. (DBP)
 931004 Corrected name conversion errors. (FNF)
 931005 Corrected list of equivalent routines and made sure that all
 variables are declared. (FNF)
 931026 Minor change to reduce single/double differences. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE SMEANF

PMATH Reference Manual - 127

SMEANV

 SUBROUTINE SMEANV (A, N, M, AV)
 ***BEGIN PROLOGUE SMEANV
 ***PURPOSE Mean vector of a two-dimensional real array.
 Calculates the means of N observations on each of M
 variables.
 ***LIBRARY PMATH
 ***CATEGORY L1B
 ***TYPE SINGLE PRECISION (SMEANV-S, DMEANV-D, MEANV8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, MEAN, VECTOR
 ***AUTHOR Unknown, Name (LLNL/USD/NMG)
 Durst, Mark J. (LLNL/CMRD/SPG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine AMEANV.)
 *Usage:
 INTEGER N, M
 REAL A(N,M), AV(M)
 CALL SMEANV (A, N, M, AV)

 *Arguments:
 A :IN N by M array of N observations on M variables.
 N :IN Row dimension of A.
 M :IN Column dimension of A.
 AV:OUT Array containing the values of the means, i.e.,

 N
 AV(j) = sum A(i,j) / N , j = 1,...,M.
 i=1

 *Description:
 SMEANV calculates the means of the N observations on each of M
 variables contained in the columns of A.

 The result AV is mathematically equivalent to applying SMEANF to
 each of the columns of A, but SMEANV should be faster.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 (The above is the date of LCSD-442,Rev.1 and is undoubtedly
 a significant underestimate of the age of this routine.)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE SMEANV

PMATH Reference Manual - 128

SMEDF

 REAL FUNCTION SMEDF (A, N, WK)
 ***BEGIN PROLOGUE SMEDF
 ***PURPOSE Median of a one-dimensional real array.
 ***LIBRARY PMATH
 ***CATEGORY L1A
 ***TYPE SINGLE PRECISION (SMEDF-S, DMEDF-D, AMED8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, MEDIAN
 ***AUTHOR Unknown, Name (LLNL/USD/NMG)
 Durst, Mark J. (LLNL/CMRD/SPG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine AMEDF.)
 *Usage:
 INTEGER N
 REAL ANS, A(N), WK(N)
 ANS = SMEDF (A, N, WK)

 *Arguments:
 A :IN Array of input values.
 N :IN Number of elements in A.
 WK:WORK Work array of size N.

 *Function Return Values:
 ANS : the median of the values in A.

 *Description:
 SMEDF calculates the median of the N values contained in A. If N
 is odd, the median is the (N + 1)/2 ordered value. For N even,
 the value is the average of the N/2 and N/2 + 1 ordered values.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 (The above is the date of LCSD-442,Rev.1 and is undoubtedly
 a significant underestimate of the age of this routine.)
 890223 Added SLATEC/LDOC prologue. (FNF)
 890518 Modified sequence numbers to fit in columns 73-80. (FNF)
 920319 Updated with prologue edited 891025 by G. Shaw for manual.
 930930 Converted old UNICOS names to S- or I-names. (DBP)
 931004 Corrected name conversion errors. (FNF)
 931005 Corrected list of equivalent routines, made sure that all
 variables are declared, and improved comments. (FNF)
 931026 Minor change to reduce single/double differences. (FNF)
 931116 Eliminated two-branch IF statements. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE SMEDF

PMATH Reference Manual - 129

SMINAF

 REAL FUNCTION SMINAF (ARRAY, IFIRST, ILAST, ISTRID, IMIN)
 ***BEGIN PROLOGUE SMINAF
 ***PURPOSE Minimum value in a one-dimensional array.
 ***LIBRARY PMATH
 ***CATEGORY N5A
 ***TYPE SINGLE PRECISION (SMINAF-S, DMINAF-D, AMINF8-8, IMINAF-I)
 ***KEYWORDS MINIMUM
 ***AUTHOR Painter, Jeffrey F., (LLNL)
 Revised by:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine AMINAF.)
 *Usage:
 INTEGER IFIRST, ILAST, ISTRID, IMIN
 REAL ARRAY(n), AMIN, SMINAF
 AMIN = SMINAF (ARRAY, IFIRST, ILAST, ISTRID, IMIN)

 *Arguments:
 ARRAY:IN Real array to be searched.
 n, the dimension of the array, must be no less than
 ILAST.

 IFIRST:IN First subscript in the array to be searched.

 ILAST :IN Last subscript in the array to be searched.

 ISTRID:IN Increment (stride) between successive locations that
 are to be searched.

 IMIN :OUT Index of the minimum value in the array, i.e., the
 ordinal position of the value in the array.

 *Function Return Values:
 AMIN : Minimum value in the array.

 *Description:
 SMINAF finds the minimum value in a one-dimensional real array,
 and returns its index. In case of multiple minima, the last
 index found is returned.

 *Cautions:
 The array is assumed to be subscripted from 1.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830401 DATE WRITTEN (J. F. Painter)
 931005 Augmented list of equivalent routines. (FNF)
 940421 Corrected category. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE SMINAF

PMATH Reference Manual - 130

SMINMX

 SUBROUTINE SMINMX (ARRAY, IFIRST, ILAST, ISTRID, AMIN, AMAX,
 + IMIN, IMAX)
 ***BEGIN PROLOGUE SMINMX
 ***PURPOSE Minimum and maximum values in a one-dimensional array.
 ***LIBRARY PMATH
 ***CATEGORY N5A
 ***TYPE SINGLE PRECISION (SMINMX-S, DMINMX-D, AMNMX8-8, IMINMX-I)
 ***KEYWORDS MINIMUM, MAXIMUM
 ***AUTHOR Painter, Jeffrey F., (LLNL)
 Revised by:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine AMINMX.)
 *Usage:
 INTEGER IFIRST, ILAST, ISTRID, IMIN, IMAX
 REAL ARRAY(n), AMIN, AMAX
 CALL SMINMX (ARRAY, IFIRST, ILAST, ISTRID, AMIN, AMAX,
 * IMIN, IMAX)

 *Arguments:
 ARRAY:IN Real array to be searched.
 n, the dimension of the array, must be no less than
 ILAST.

 IFIRST:IN First subscript in the array to be searched.

 ILAST :IN Last subscript in the array to be searched.

 ISTRID:IN Increment (stride) between successive locations that
 are to be searched (>= 1).

 AMIN :OUT Minimum value in the array.

 AMAX :OUT Maximum value in the array.

 IMIN :OUT Index of the minimum value in the array, i.e., the
 ordinal position of the value in the array.

 IMAX :OUT Index of the maximum value in the array, i.e., the
 ordinal position of the value in the array.

 *Description:
 SMINMX finds the minimum and maximum values in a one-dimensional
 real array, and returns their indices. In case of multiple
 extrema, the last index found is returned.

 ISTRID should be greater than or equal to 1. If ISTRID is less
 than 1, it is assumed to be 1.

 *Cautions:
 The array is assumed to be subscripted from 1.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 ***END PROLOGUE SMINMX

PMATH Reference Manual - 131

SRANF

 REAL FUNCTION SRANF()
 ***BEGIN PROLOGUE SRANF
 ***PURPOSE Uniform random-number generator.
 The pseudorandom numbers generated by SRANF/DRANF/RANF8
 are uniformly distributed in the open interval (0,1).
 ***LIBRARY PMATH
 ***CATEGORY L6A21
 ***TYPE SINGLE PRECISION (SRANF-S, DRANF-D, RANF8-8)
 ***KEYWORDS RANDOM NUMBER GENERATION, UNIFORM DISTRIBUTION
 ***AUTHOR Fritsch, Fred N., (LLNL/LC/MSS)
 Original CAL version:
 Margolies, David, (LLNL/USD/MSS)
 Durst, Mark J. (LLNL/CMRD/SPG)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RANF.)
 *Usage:
 REAL R, SRANF
 R = SRANF()

 *Function Return Values:
 R Random number between 0 and 1.

 *Description:
 SRANF generates pseudorandom numbers lying strictly between 0
 and 1. Each call to SRANF produces a different value, until the
 sequence cycles after 2**46 calls.

 SRANF is a linear congruential pseudorandom-number generator.
 The default starting seed is
 SEED = 4510112377116321(oct) = 948253fc9cd1(hex).
 The multiplier is 1207264271730565(oct) = 2875a2e7b175(hex).

 *See Also:
 For exponentially distributed random numbers, use SRLGF instead of
 SRANF.
 The starting seed for SRANF may be set via RNSSET.
 The current SRANF seed may be obtained from RNSGET.
 The SRANF multiplier may be set via RNMSET (changing the
 multiplier is not recommended).
 The number of calls to SRANF may be obtained from RNFCNT.

 ***ROUTINES CALLED RANF8
 ***REVISION HISTORY (YYMMDD)
 800325 DATE WRITTEN
 951009 Minor cosmetic changes. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE SRANF

PMATH Reference Manual - 132

SRANFV

 SUBROUTINE SRANFV (N, RANOUT)
 ***BEGIN PROLOGUE SRANFV
 ***PURPOSE Vector uniform random-number generator.
 Returns a vector of numbers from the SRANF/DRANF/RANF8
 sequence.
 ***LIBRARY PMATH
 ***CATEGORY L6A21
 ***TYPE SINGLE PRECISION (SRANFV-S, DRANFV-D, RANFV8-8)
 ***KEYWORDS RANDOM NUMBER GENERATION, UNIFORM DISTRIBUTION, VECTOR
 ***AUTHOR Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RANFV.)
 *Usage:
 INTEGER N
 REAL RANOUT(n)
 CALL SRANFV (N, RANOUT)

 *Arguments:
 N :IN Number of random numbers to be generated.
 RANOUT:OUT Vector of N random numbers between 0 and 1.
 The actual dimension of RANOUT must satisfy n>=N.

 *Description:
 SRANFV generates pseudorandom numbers lying strictly between 0
 and 1. The above call is equivalent to the loop
 DO 10 I=1,N
 RANOUT(I) = SRANF()
 10 CONTINUE
 except that SRANFV may be significantly faster for suitable N.
 (The actual timing is likely to be platform-dependent.)

 *See Also:
 Refer to SRANF description for information on restarting the
 sequence and related matters.

 ***ROUTINES CALLED SRANF
 ***REVISION HISTORY (YYMMDD)
 931011 DATE WRITTEN
 931011 Created portable version that merely calls SRANF. (FNF)
 931025 Added equivalent routines list. (FNF)
 940421 Improved purpose. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE SRANFV

PMATH Reference Manual - 133

SRANKS

 SUBROUTINE SRANKS (A, N, AO, RA, IO, B, ISTAK)
 ***BEGIN PROLOGUE SRANKS
 ***PURPOSE Ranks of a one-dimensional real array.
 ***LIBRARY PMATH
 ***CATEGORY L1A
 ***TYPE SINGLE PRECISION (SRANKS-S, DRANKS-D, RANKS8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, RANKS
 ***AUTHOR Unknown, Name, (LLNL/USD/NMG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RANKS.)
 *Usage:
 INTEGER N, IO(N), ISTAK(N)
 REAL A(N), AO(N), RA(N), B(N)
 CALL SRANKS (A, N, AO, RA, IO, B, ISTAK)

 *Arguments:
 A :IN Array of input values.
 N :IN Number of elements in A.
 AO :OUT Array containing the values of A ordered.
 RA :OUT Array of order N, containing the ranks.
 IO :WORK Work array of order N.
 B :WORK Work array of order N.
 ISTAK:WORK Work array of order N.

 *Description:
 SRANKS orders the N values contained in A and calculates their
 ranks. For ties, the average of the ranks is assigned.

 *Accuracy:

 *Cautions:
 This routine was formerly known as ORDERS. Its name was changed
 in March 1991 to avoid conflict with a SCILIB (OMNILIB) routine.

 *Portability:

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 931005 Augmented list of equivalent routines, made sure that all
 variables are declared, and improved comments. (FNF)
 931116 Eliminated two-branch IF statements. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE SRANKS

PMATH Reference Manual - 134

SREFIT

 SUBROUTINE SREFIT (YDATA, NDATA, MTERMS, WEIGHT, COEFF, RSD2,
 + WORK, JOB, IERR)
 ***BEGIN PROLOGUE SREFIT
 ***PURPOSE Repeated polynomial fitting.
 SREFIT(DREFIT) is called after a call of SFITPO(DFITPO) to
 fit a polynomial of the same or lower degree to the same
 data or to data in which y has been changed but x left the
 same.
 ***LIBRARY PMATH
 ***CATEGORY K1A1A2, L8B1B1
 ***TYPE SINGLE PRECISION (SREFIT-S, DREFIT-D, REFIT8-8)
 ***KEYWORDS POLYNOMIAL FITTING, LEAST SQUARES
 ***AUTHOR Painter, Jeffrey F., (LLNL/CMRD)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine REFITP.)
 *Usage:
 INTEGER NDATA, MTERMS, JOB, IERR
 PARAMETER (NWORK = (NDATA+1)*(MTERMS+1))
 REAL YDATA(NDATA), WEIGHT(NDATA), COEFF(MTERMS), RSD2,
 * WORK(NWORK)

 CALL SREFIT (YDATA, NDATA, MTERMS, WEIGHT, COEFF, RSD2,
 * WORK, JOB, IERR)

 *Arguments:
 YDATA :IN Array of values (new or old) of the dependent
 variable, y, of dimension NDATA.

 NDATA :IN Number of data points. It must be the same as the
 NDATA used for SFITPO.

 MTERMS:IN Number of terms in the polynomial to be found. It
 cannot be greater than NTERMS, the number of terms
 in the polynomial that SFITPO found.
 If MTERMS > NDATA, the result will be the coefficients
 of an interpolating polynomial of degree NDATA-1, and
 COEFF(j) = 0 for j > NDATA.

 WEIGHT:IN Optional weight array. It must be the same as in
 the SFITPO call.

 COEFF :OUT Array containing the MTERMS coefficients of the
 polynomial.

 RSD2 :OUT Sum of the squares of the (weighted) residuals
 corresponding to COEFF.

 WORK :WORK Must be exactly the same array as in the previous
 call of SFITPO or SREFIT; no changes may be made by
 the calling program. As in SFITPO, WORK contains the
 residuals R(i) in its first NDATA entries if JOB is
 nonzero.

 JOB :IN Residuals-computation flag:

PMATH Reference Manual - 135

 non-0 Residuals are computed and output in WORK.
 0 Residuals are not completely computed,
 although RSD2 is computed. (This option will
 more efficient if the R(i) are not required.)

 IERR :OUT Error flag. On normal termination, IERR = 0.

 Fatal errors:
 (1) SQRSL returned INFO=IERR: 0 < IERR <= NTERMS
 A singular matrix has been detected (same meaning
 as in SFITPO). SREFIT should not be called if
 SFITPO returned IERR > 0.
 (2) MTERMS > NTERMS: IERR = -1
 COEFF has not been computed in either case.

 *Description:
 SREFIT is called, after a call of SFITPO, to fit a polynomial of
 the same or lower degree to the same data or to data in which y
 has been changed but x left the same as in the SFITPO call.

 SREFIT provides the same output as would a second call of SFITPO,
 but SREFIT is more efficient. SREFIT may be called any number of
 times, as long as the contents of WORK are not disturbed.

 *Portability:
 This routine calls the LINPACK routine SQRSL, and BLAS (Basic
 Linear Algebra Subprograms) SCOPY, SDOT.

 *See Also:
 See SFITPO for additional information.

 ***SEE ALSO SFITPO
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SCOPY, SDOT, SQRSL
 ***REVISION HISTORY (YYMMDD)
 ***END PROLOGUE SREFIT

PMATH Reference Manual - 136

SRLGF

 REAL FUNCTION SRLGF()
 ***BEGIN PROLOGUE SRLGF
 ***PURPOSE Exponential random-number generator.
 The pseudorandom numbers generated by SRLGF/DRLGF/RLGF8
 are drawn from the exponential distribution with mean 1.
 ***LIBRARY PMATH
 ***CATEGORY L6A5
 ***TYPE SINGLE PRECISION (SRLGF-S, DRLGF-D, RLGF8-8)
 ***KEYWORDS RANDOM NUMBER GENERATION, EXPONENTIAL DISTRIBUTION
 ***AUTHOR Fritsch, Fred N., (LLNL/LC/MSS)
 Original CAL version:
 Margolies, David, (LLNL/USD/MSS)
 Durst, Mark J. (LLNL/CMRD/SPG)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine RLGF.)
 *Usage:
 REAL R
 R = SRLGF()

 *Function Return Values:
 R A random number drawn from the exponential distribution
 with mean 1.

 *Description:
 SRLGF takes the natural logarithm of uniform random numbers.
 SRLGF() should be used in place of the expression -LOG(SRANF()).
 Each call to SRLGF produces a different value, until the sequence
 cycles after 2**46 calls.

 SRLGF uses a linear congruential pseudorandom-number generator
 which is identical to SRANF except that the default starting seed
 is different:
 SEED = 7315512527213717(oct) = ecda555d17cf(hex).
 The multiplier is 1207264271730565(oct) = 2875a2e7b175(hex).
 The SRLGF/DRLGF/RLGF8 sequence is independent of that generated
 by SRANF/DRANF/RANF8.

 *Cautions:
 Note that if you are using both SRANF and SRLGF, stopping and
 restarting both sequences will require calling both RNSGET/RNSSET
 and RLSGET/RLSSET.

 ***ROUTINES CALLED RLGF8
 ***REVISION HISTORY (YYMMDD)
 800325 DATE WRITTEN
 ***END PROLOGUE SRLGF

PMATH Reference Manual - 137

SSRCOM

 SUBROUTINE SSRCOM (RSAV, ISAV, JOB)
 ***BEGIN PROLOGUE SSRCOM
 ***PURPOSE Save/restore ODEPACK COMMON blocks.
 ***LIBRARY PMATH (ODEPACK)
 ***CATEGORY I1C
 ***TYPE SINGLE PRECISION (SSRCOM-S, DSRCOM-D, SRCOM8-8)
 ***AUTHOR Hindmarsh, Alan C., (LLNL)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine SRCOM.)

 This routine saves or restores (depending on JOB) the contents of
 the COMMON block SLS001, which is used internally
 by one or more ODEPACK solvers.

 RSAV = real array of length 218 or more.
 ISAV = integer array of length 37 or more.
 JOB = flag indicating to save or restore the COMMON blocks:
 JOB = 1 if COMMON is to be saved (written to RSAV/ISAV)
 JOB = 2 if COMMON is to be restored (read from RSAV/ISAV)
 A call with JOB = 2 presumes a prior call with JOB = 1.

 ***SEE ALSO SLSODE
 ***ROUTINES CALLED (NONE)
 ***COMMON BLOCKS SLS001
 ***REVISION HISTORY (YYMMDD)
 791129 DATE WRITTEN
 890501 Modified prologue to SLATEC/LDOC format. (FNF)
 890503 Minor cosmetic changes. (FNF)
 921116 Deleted treatment of block /EH0001/. (ACH)
 930801 Reduced Common block length by 2. (ACH)
 930809 Renamed to allow single/double precision versions. (ACH)
 940315 Added REAL*8 name to C***TYPE line. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 941011 Changed to user-callable. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE SSRCOM

PMATH Reference Manual - 138

SSTDEV

 REAL FUNCTION SSTDEV (A, N, IND)
 ***BEGIN PROLOGUE SSTDEV
 ***PURPOSE Standard deviation of a one-dimensional real array.
 ***LIBRARY PMATH
 ***CATEGORY L1A
 ***TYPE SINGLE PRECISION (SSTDEV-S, DSTDEV-D, STDEV8-8)
 ***KEYWORDS ELEMENTARY STATISTICS, STANDARD DEVIATION
 ***AUTHOR Unknown, Name (LLNL/USD/NMG)
 Durst, Mark J. (LLNL/CMRD/SPG)
 Currently responsible:
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine STDEVF.)
 *Usage:
 INTEGER N, IND
 REAL ANS, A(N)
 ANS = SSTDEV (A, N, IND)

 *Arguments:
 A :IN Array of input values.
 N :IN Number of elements in A.
 IND:IN Job-control flag:
 0 Divide the adjusted sum of squares by N - 1,
 producing the usual standard-deviation calculation.
 non-0 Divide by N.

 *Function Return Values:
 ANS The standard deviation of the values in A.

 *Description:
 SSTDEV calculates the standard deviation of the N values contained
 in A, as modified by IND.

 *See Also:
 For a vector of standard deviations, see SCOVAR.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 830812 DATE WRITTEN
 (The above is the date of LCSD-442,Rev.1 and is undoubtedly
 a significant underestimate of the age of this routine.)
 ***END PROLOGUE SSTDEV

PMATH Reference Manual - 139

SZERO

 SUBROUTINE SZERO (F, B, C, ABSERR, RELERR, IFLAG)
 ***BEGIN PROLOGUE SZERO
 ***PURPOSE Find a root x of a nonlinear equation F(x) = 0.
 A search interval (b,c) must be supplied such that
 F(b)*F(c) <= 0.
 ***LIBRARY PMATH
 ***CATEGORY F1B
 ***TYPE SINGLE PRECISION (SZERO-S, DZERO-D, ZERO8-8)
 ***KEYWORDS ZEROFINDING, NONLINEAR EQUATIONS, SECANT METHOD,
 BISECTION METHOD
 ***AUTHOR Leonard, L. J., (LLNL)
 Fritsch, Fred N., (LLNL/LC/MSS)
 ***DESCRIPTION
 (Portable version of Cray MATHLIB routine ZEROIN.)
 *Usage:
 INTEGER IFLAG
 REAL F, B, C, ABSERR, RELERR
 EXTERNAL F
 CALL SZERO (F, B, C, ABSERR, RELERR, IFLAG)

 *Arguments:
 F :EXT Name of a function subprogram defining a continuous
 real function of a single real variable x. The
 calling program must declare the function to be
 EXTERNAL.

 B :INOUT Input: Lower bound of the search interval (B,C).
 Output: The better approximation to a root, for B
 and C are redefined so that
 ABS(F(B)) <= ABS(F(C)).

 C :INOUT Input: Upper bound of the search interval (B,C).
 Output: The value of C is not necessarily close to
 B and should be disregarded (see B above).

 ABSERR:IN Roughly the maximum difference allowed between B
 and C. If zero is a possible root, do not use
 ABSERR = 0.

 RELERR:IN Roughly the maximum relative error allowed between
 B and C; i.e., the degree of accuracy required in
 the root.

 IFLAG:INOUT Input:
 >= 6 The maximum number of function evaluations
 allowed.
 < 6 The maximum number of evaluations is 100.

 Output:
 1 F(B) * F(C) < 0, and the stopping criterion
 ABS(B - C) <= 2.0 * (RELERR * ABS(B) + ABSERR)
 is met.
 2 B is found such that F(B) = 0. The interval
 (B,C) may or may not have satisfied the stopping
 criterion.
 3 ABS(F(B)) exceeds the absolute values of the

PMATH Reference Manual - 140

 function at the original input values of B and C;
 i.e., the values found by SZERO are "worse" than
 those supplied in the call. In this case, it is
 likely that B is near a pole of the function.
 4 No odd-order zero was found in the interval. A
 local minimum may have been obtained.
 5 The stopping criterion is not met within the
 specified number of function evaluations.

 *Description:
 SZERO finds a root x of the nonlinear equation F(x) = 0. Normal
 input consists of a continuous function F and an initial search
 interval (B,C) that brackets the desired zero of F; i.e.,
 F(B) * F(C) <= 0.

 Each iteration finds new values of B and C such that the interval
 (B,C) is shrunk, and F(B) * F(C) <= 0. The stopping criterion is

 ABS(B - C) <= 2.0 * (RELERR*ABS(B) + ABSERR)

 SZERO is a slightly modified version of the subroutine SZERO by
 Shampine and Allen (see Ref. 2). The method used is a combination
 of bisection and the secant iteration.

 *Cautions:
 F is assumed to be a continuous real-valued function. The
 algorithm in SZERO assumes that F has exactly one zero in the
 interval [B,C]. If, in fact, F has an odd number of zeros, SZERO
 will zero in on one of them, giving no indication that there may
 be more.

 ***ROUTINES CALLED RUMACH
 ***REVISION HISTORY (YYMMDD)
 940425 Added "EXTERNAL F" statement for certain compilers. (FNF)
 940727 Added preprocessor directives for REAL*8 entries. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE SZERO

PMATH Reference Manual - 141

XERROR

 SUBROUTINE XERROR (MESSG, NMESSG, NERR, LEVEL)
 ***BEGIN PROLOGUE XERROR
 ***PURPOSE Process an error (diagnostic) message.
 ***LIBRARY PMATH
 ***TYPE ALL (XERROR-A)
 ***CATEGORY R3C
 ***KEYWORDS ERROR
 ***AUTHOR JONES, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 XERROR processes a diagnostic message, in a manner
 determined by the value of LEVEL and the current value
 of the library error control flag, KONTRL.
 (See subroutine XSETF for details.)

 Description of Parameters
 --Input--
 MESSG - the Hollerith message to be processed, containing
 no more than 72 characters.
 NMESSG- the actual number of characters in MESSG.
 NERR - the error number associated with this message.
 NERR must not be zero.
 LEVEL - error category.
 =2 means this is an unconditionally fatal error.
 =1 means this is a recoverable error. (I.e., it is
 non-fatal if XSETF has been appropriately called.)
 =0 means this is a warning message only.
 =-1 means this is a warning message which is to be
 printed at most once, regardless of how many
 times this call is executed.

 Examples
 CALL XERROR('SMOOTH -- NUM WAS ZERO.',23,1,2)
 CALL XERROR('INTEG -- LESS THAN FULL ACCURACY ACHIEVED.',
 1 43,2,1)
 CALL XERROR('ROOTER -- ACTUAL ZERO OF F FOUND BEFORE INTERVAL F
 1ULLY COLLAPSED.',65,3,0)
 CALL XERROR('EXP -- UNDERFLOWS BEING SET TO ZERO.',39,1,-1)

 Written by Ron Jones, with SLATEC Common Math Library Subcommittee
 ***REFERENCES JONES R.E., KAHANER D.K., 'XERROR, THE SLATEC ERROR-
 HANDLING PACKAGE', SAND82-0800, SANDIA LABORATORIES,
 1982.
 ***ROUTINES CALLED XERRWV
 ***REVISION HISTORY (YYMMDD)
 ***END PROLOGUE XERROR

PMATH Reference Manual - 142

XERRWD

 SUBROUTINE XERRWD (MSG, NMES, NERR, LEVEL, NI, I1, I2, NR, R1, R2)
 ***BEGIN PROLOGUE XERRWD
 ***PURPOSE Write error message with values.
 ***LIBRARY PMATH
 ***CATEGORY R3C
 ***TYPE DOUBLE PRECISION (XERRWV-S, XERRWD-D)
 ***AUTHOR Hindmarsh, Alan C., (LLNL)
 ***DESCRIPTION

 Subroutines XERRWD, XSETF, XSETUN, and the function routine IXSAV,
 as given here, constitute a simplified version of the SLATEC error
 handling package.

 All arguments are input arguments.

 MSG = The message (character array).
 NMES = The length of MSG (number of characters).
 NERR = The error number (not used).
 LEVEL = The error level..
 0 or 1 means recoverable (control returns to caller).
 2 means fatal (run is aborted--see note below).
 NI = Number of integers (0, 1, or 2) to be printed with message.
 I1,I2 = Integers to be printed, depending on NI.
 NR = Number of reals (0, 1, or 2) to be printed with message.
 R1,R2 = Reals to be printed, depending on NR.

 Note.. this routine is machine-dependent and specialized for use
 in limited context, in the following ways..
 1. The argument MSG is assumed to be of type CHARACTER, and
 the message is printed with a format of (1X,A).
 2. The message is assumed to take only one line.
 Multi-line messages are generated by repeated calls.
 3. If LEVEL = 2, control passes to the statement STOP
 to abort the run. This statement may be machine-dependent.
 4. R1 and R2 are assumed to be in double precision and are printed
 in D21.13 format.

 ***ROUTINES CALLED IXSAV
 ***REVISION HISTORY (YYMMDD)
 920831 DATE WRITTEN
 921118 Replaced MFLGSV/LUNSAV by IXSAV. (ACH)
 930329 Modified prologue to SLATEC format. (FNF)
 930407 Changed MSG from CHARACTER*1 array to variable. (FNF)
 930922 Minor cosmetic change. (FNF)
 941011 Changed to user-callable. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE XERRWD

PMATH Reference Manual - 143

XERRWV

 SUBROUTINE XERRWV (MSG, NMES, NERR, LEVEL, NI, I1, I2, NR, R1, R2)
 ***BEGIN PROLOGUE XERRWV
 ***PURPOSE Write error message with values.
 ***LIBRARY PMATH
 ***CATEGORY R3C
 ***TYPE SINGLE PRECISION (XERRWV-S, XERRWD-D)
 ***AUTHOR Hindmarsh, Alan C., (LLNL)
 ***DESCRIPTION

 Subroutines XERRWV, XSETF, XSETUN, and the function routine IXSAV,
 as given here, constitute a simplified version of the SLATEC error
 handling package.

 All arguments are input arguments.

 MSG = The message (character array).
 NMES = The length of MSG (number of characters).
 NERR = The error number (not used).
 LEVEL = The error level..
 0 or 1 means recoverable (control returns to caller).
 2 means fatal (run is aborted--see note below).
 NI = Number of integers (0, 1, or 2) to be printed with message.
 I1,I2 = Integers to be printed, depending on NI.
 NR = Number of reals (0, 1, or 2) to be printed with message.
 R1,R2 = Reals to be printed, depending on NR.

 Note.. this routine is machine-dependent and specialized for use
 in limited context, in the following ways..
 1. The argument MSG is assumed to be of type CHARACTER, and
 the message is printed with a format of (1X,A).
 2. The message is assumed to take only one line.
 Multi-line messages are generated by repeated calls.
 3. If LEVEL = 2, control passes to the statement STOP
 to abort the run. This statement may be machine-dependent.
 4. R1 and R2 are assumed to be in single precision and are printed
 in E21.13 format.

 ***ROUTINES CALLED IXSAV
 ***REVISION HISTORY (YYMMDD)
 791129 DATE WRITTEN
 ***END PROLOGUE XERRWV

PMATH Reference Manual - 144

XSETF

 SUBROUTINE XSETF (MFLAG)
 ***BEGIN PROLOGUE XSETF
 ***PURPOSE Reset the error print control flag.
 ***LIBRARY PMATH
 ***CATEGORY R3A
 ***TYPE ALL (XSETF-A)
 ***KEYWORDS ERROR CONTROL
 ***AUTHOR Hindmarsh, Alan C., (LLNL)
 ***DESCRIPTION

 XSETF sets the error print control flag to MFLAG:
 MFLAG=1 means print all messages (the default).
 MFLAG=0 means no printing.

 ***SEE ALSO XERMSG, XERRWD, XERRWV
 ***REFERENCES (NONE)
 ***ROUTINES CALLED IXSAV
 ***REVISION HISTORY (YYMMDD)
 921118 DATE WRITTEN
 930329 Added SLATEC format prologue. (FNF)
 930407 Corrected SEE ALSO section. (FNF)
 930922 Made user-callable, and other cosmetic changes. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE XSETF

PMATH Reference Manual - 145

XSETUN

 SUBROUTINE XSETUN (LUN)
 ***BEGIN PROLOGUE XSETUN
 ***PURPOSE Reset the logical unit number for error messages.
 ***LIBRARY PMATH
 ***CATEGORY R3B
 ***TYPE ALL (XSETUN-A)
 ***KEYWORDS ERROR CONTROL
 ***DESCRIPTION

 XSETUN sets the logical unit number for error messages to LUN.

 ***AUTHOR Hindmarsh, Alan C., (LLNL)
 ***SEE ALSO XERMSG, XERRWD, XERRWV
 ***REFERENCES (NONE)
 ***ROUTINES CALLED IXSAV
 ***REVISION HISTORY (YYMMDD)
 921118 DATE WRITTEN
 930329 Added SLATEC format prologue. (FNF)
 930407 Corrected SEE ALSO section. (FNF)
 930922 Made user-callable, and other cosmetic changes. (FNF)
 951010 Corrected LIBRARY line. (FNF)
 ***END PROLOGUE XSETUN

PMATH Reference Manual - 146

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes.
(C) Copyright 2002 The Regents of the University of California. All rights reserved.

PMATH Reference Manual - 147

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 150).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
function Topics covered in this document.
availability Where these programs run.
who Who to contact for assistance.

introduction Role and goals of this document.
 background PMATH's relation to MATHLIB.
 availability-2 PMATH, MATHLIB, SLATEC access chart.

design-principles How PMATH was planned.
 names Naming scheme for PMATH, MATHLIB.
 random-numbers-0 PMATH's support for random nums.
 other-routines-0 Constants and conversions in PMATH.

mathlib-categories Routines categorized, MATHLIB names.
 mathlib-included MATHLIB rtns included in PMATH.
 These categories divide the library:
 elementary-functions-1
 random-numbers-1
 max-min-1
 table-look-up-1
 statistics-1
 linear-algebra-1
 root-finders-1
 interpolation-1
 differential-equations-1
 other-routines-1
 error-procedures-1
 mathlib-omitted MATHLIB rtns omitted from PMATH.
 These categories have excluded rtns:
 elementary-functions-2
 random-numbers-2
 max-min-2
 differential-equations-2
 error-procedures-2
 name-chart PMATH-MATHLIB name-conversion chart.

pmath-categories Routines categorized, PMATH names.
 task-list PMATH rtns grouped by function.
 These categories divide the library:
 elementary-functions
 random-numbers
 max-min
 table-look-up
 statistics
 linear-algebra
 root-finders
 interpolation
 differential-equations

PMATH Reference Manual - 148

 other-routines
 error-procedures
 added-routines Routines new to PMATH.
 vectorized-ranf Portable version of RANFV.
 seed-passing Moving random-number seeds (2 rtns).

pmath-routines Alphabetized PMATH routine prologs.
 (See next section for list.

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

PMATH Reference Manual - 149

Alphabetical List of Keywords
All PMATH routines described in this manual are listed here alphabetically by root name (RIGHT-most

column), with a link to the single precision (S-name) prolog if one exists. Corresponding MATHLIB routine
names apppear in the LEFT-most column, for reference.

MATHLIB -PMATH-
(UNICOS) S-name D-name REAL*8
name name

AAAAAA --- --- AAAAAA
AMAXAF SMAXAF DMAXAF AMAXF8
AMEANF SMEANF DMEANF AMEAN8
AMEDF SMEDF DMEDF AMED8
AMINAF SMINAF DMINAF AMINF8
AMINMX SMINMX DMINMX AMNMX8
CONSTANT SCONST DCONST CONST8
CORRV SCORRV DCORRV CORRV8
COVARV SCOVAR DCOVAR COVAR8
 --- --- --- CV16TO64
 --- --- --- CV64TO16
FITPOL SFITPO DFITPO FITPO8
MAXAF --- --- IMAXAF
MINAF --- --- IMINAF
MINMX --- --- IMINMX
IUMACH --- --- IUMACH
LDF LDFS LDFD LDF8
LSODE SLSODE DLSODE LSODE8
LUF LUFS LUFD LUF8
LUG LUGS LUGD LUG8
AMEANV SMEANV DMEANV MEANV8
RANF SRANF DRANF RANF8
RANFV SRANFV DRANFV RANFV8
RANKS SRANKS DRANKS RANKS8
REFITP SREFIT DREFIT REFIT8
RLGCNT --- --- RLFCNT
RLGF SRLGF DRLGF RLGF8
RLGMSET --- --- RLMSET
RLGGET --- --- RLSGET
RLGSET --- --- RLSSET
RNCOUNT --- --- RNFCNT
RNMUSET --- --- RNMSET
RANGET --- --- RNSGET
RANSET --- --- RNSSET
STDEVF SSTDEV DSTDEV STDEV8
RUMACH RUMACH DUMACH UMACH8
XERROR --- --- XERROR

PMATH Reference Manual - 150

XERRWV XERRWV XERRWD XERRWV
XSETF --- --- XSETF
XSETUN --- --- XSETUN
ZEROIN SZERO DZERO ZERO8

PMATH Reference Manual - 151

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
25Nov02 background Pathname clarified.
 availability-2 Compaqs, Linux now included.

21Mar00 entire CRAYs retired; all CRAY references
 revised or deleted.

24Jul97 entire First edition of PMATH manual.

TRG (25Nov02)

UCRL-WEB-201525
LLNL Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (25Nov02) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

PMATH Reference Manual - 152

http://www.llnl.gov/disclaimer.html

